Math 2E03- Introduction to Modelling

Instrutor- Dr. Mani Mehra

Department of Mathematics and Statistics McMaster Univ.

Conti. from previous lecture

We solve this equation under the assumption that the pop. is in a stable age distribution. Thus, we assume that growth is expontial at the rate r, where we again use the symbol r to represent the intrinsic rate of increses of the pop. This can be expressed as

$$
\begin{equation*}
B(t)=e^{r t} B(0) \tag{1}
\end{equation*}
$$

Now using (5) from the previous lecture and (1) we get the Euler's equation

$$
\begin{equation*}
1=\int_{0}^{\infty} e^{-r x} l(x) m(x) d x \tag{2}
\end{equation*}
$$

Note that this equation can be used to find r if we know the life table for a particular organism.

However, the birth rates and survival probabilities cannot be measured over continuous time, only at discrete intervals. When this pop. is used to estimate r, ecologist usually use a discrete approximation obtained by replacing the integral with a sum

$$
\begin{equation*}
1=\sum_{x=0}^{\infty} e^{-r x} l_{x} m_{x} \tag{3}
\end{equation*}
$$

An estimate for r can be found from this equation numerically.
Net productive rate :: There is another quantity that is often calculated from the life table, the net production rate R_{0} which is average total number of offspring produced by a single individual in her lifetime.

$$
\begin{equation*}
R_{0}=\int_{0}^{\infty} l(x) m(x) d x \tag{4}
\end{equation*}
$$

Stable age distribution :: Denote by $c(x)$ a densuty function for the fraction of individuals of age x in the stable age distribution. This means that the fraction of individuals between ages x and $x+d x$ is given by $\int_{x}^{x+d x} c(z) d z \approx c(x) d x$.
Thus

$$
\begin{equation*}
c(x)=\frac{\text { number of individuals of age } x}{\text { total number of individuals }} \tag{5}
\end{equation*}
$$

Where the total number of individuals is given by

$$
\begin{equation*}
\int_{0}^{\infty}(\text { number of individuals of age } x) d x \tag{6}
\end{equation*}
$$

which will be

$$
\begin{align*}
c(x) & =\frac{B(t-x) l(x)}{\int_{0}^{\infty} B(t-z) l(z) d z} \tag{7}\\
& \approx \frac{e^{-r x} l_{x}}{\sum_{0}^{\infty} e^{-r x} l_{x}}
\end{align*}
$$

Here we have used the age specific birth and death rates to calculate the growth rate of a pop. For many organism this is an appropriate approach, but for another organism it is not. For example, many insects go through a series of developmental stages (egg, larva, pupa and adult) that vary in duration acording to food availablity, temprature and moisture.

