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Density dependent population growth

Our earlier models and common sense shows that exponential growth
can not continue forever. Here we return to the fundamental question
of the causes and consequences of regulation of pop. growth.
Hypothesis for pop. regulation :: Many hypothesis have been proposed
for the causes of regulation of populations

• Pop. are limited by weather.

• Pop. are limited by food supply.

• Pop. are regulated by predators.

• Pop. are regulated by diseases.
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Logistic model

The basic model we will examine takes the form

(1)
dN

dt
= Nf(N)

where f(N) is the per capita growth rate.We now change the form of
function f(N) to include the effects of density dependence. We denote
by K the value of pop. density at which the growth rate is 0. This is
known as carrying capacity.

(2) f(N) = r(1 − N/K)

This equation shows that the growth rate f(N) is dependent on the
population density N . Substituting the value of (2) in (1) we get

(3)
dN

dt
= rN(1 − N/k)
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Logistic model

Solving this equation for N(t), we find

(13) N(T ) =
N(0)erT

1 + N(0)(erT − 1)/K

Some organism shows logistic growth during the first ten days of the
experiment. However, the population then declines and appears to
approach a second equilibrium phase. So how to modify logistic model
to make it more realistic.
One way is to find the best fit is to calculate the parameters values that
minimize the sum of the squares of the deviation of the model from the
experimental data points. We can also ask how good the quantitative
fit of the model to data. From some examples, we are led to the
conclusion that we should not try to make too much of the quantitative
aspects of the logistic model.
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Qualitative Analysis

• Determine the values of the pop. density, N̂ , which are equilibria.
Set

(14)
dN

dt
= 0

from this we get

rN̂(1 − N̂/k) = 0

which has the solution

N̂ = 0 and N̂ = K

• See behavior near the equilibrium points.

(15)
dN

dt
≈ rN
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• Because r > 0, the solution of (15) is

N(t) = N(0)ert

We conclude that solutions grow exponentially when N is small.

Let n represent the deviation from the equilibrium, so

(18) N = N̂ + n

Thus we rae intrested in finding how n changes with time. So

(19)
dN

dt
=

dn

dt
= F (N) where F (N) = rN(1 − N/K)

Now we need to approximate F (N) near the equilibrium, N̂ .
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We use a Taylor series

(24) F (N̂ + n) ≈ F (N̂) + n
dF

dN
|
N=N̂

Since N̂ is an equilibrrium, F (N̂) = 0. Thus we conclude

dn

dt
≈ n

dF

dN
|
N̂

≈ n(r − 2rN/K)|
N̂

(25)

Near the equlibrium point N̂ = 0 we have seen earlier. Now near the
another equilibrium point N̂ = K

(26)
dn

dt
≈ −rn
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Thus n represents the deviation from the equilibrium N̂ = K,

(33) n(t) = n(0)e−rt

The basic conclusion from the qualitative analysis do not depend on
the exact form of the logistic. And the equilibrium point N̂ = 0 is
unstable, and that the equilibrium point N̂ = K is stable.
Again behavior of some population whose number increses and
decresses in a relatively regular fashion can not be explained by the
logistic model.
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