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Why general manifolds?

(e.g. Sphere)

◮ Application of adaptive wavelet collocation method (AWCM)
to the problems of geodesy, climatology, meteorology
(Representative examples include forecasting the moisture and
cloud water fields in numerical weather prediction).

◮ Many PDE’s arise from mean curvature flow, surface diffusion
flow and Willmore flow on the sphere.
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Why wavelets?

◮ High rate of data compression.

◮ Fast O(N ) transform.

◮ Dynamic grid adaption to the local irregularities of the
solution.
(This situation arises e.g. in the tracking of storms or fronts
for the simulation of global atmospheric dynamics).

◮ Easy to control wavelet properties (e.g. smoothness, boundary
condition,better accuracy near sharp gradients).
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Why wavelets on manifolds?

(e.g. spherical wavelets)

◮ Spherical triangular grids (quasi uniform triangulations) avoid
the pole problem.
Conventional grids

◮ Uniform longitude-latitude grid.
◮ Another solution is to avoid the introduction of the ’metric

term’ which are unbounded near the poles.

◮ To solve PDE’s efficiently using adaptivity on general manifold
by wavelet methods.

◮ Past application of wavelets to turbulence have been mainly
restricted to flat geometries which severely limiting for
geophysical applications.
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Wavelet multiresolution analysis of L2(S)

Definition
MRA is characterized by the following axioms

◮ V j ⊂ V j+1 (subspaces are nested).

◮

⋃j=∞
j=−∞ Vj = L2(S).

◮ Each V j has a Riesz basis of scaling function {φj
k |k ∈ Kj}.

Define Wj = {ψj
k(wavelets)|k ∈ Mj} to be the complement of Vj

in Vj+1, where Vj+1 = Vj + Wj .
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Construction of spherical wavelets based on spherical
triangular grids

The set of all vertices S j = {pj
k ∈ S : p

j
k = p

j+1
2k |k ∈ Kj} and

Mj = Kj+1/Kj .

Level 0

Dyadic icosahedral triangulation of the sphereMani Mehra McMaster University
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Fast wavelet transform

e4 e3

e2e1

f1

f2

v1 v2

m

The members of the neighborhoods
used in wavelet bases (m ∈ Mj ,
Km = {v1, v2, f1, f2, e1, e2, e3, e4}).

Analysis(j) :

∀m ∈ Mj : d j
m = c j+1

m −
∑

k∈Km

s̃
j
k,mc

j
k ,

∀m ∈ Kj : c
j
k = c

j+1
k .

Synthesis(j) :

∀m ∈ Kj : c
j
k = c

j
k ,

∀m ∈ Mj : c j+1
m = d j

m +
∑

k∈Km

s̃
j
k,mc

j
k .
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For Butterfly basis, s̃v1 = s̃v2 = 1/2,
s̃f1 = s̃f2 = 1/8,
s̃e1 = s̃e2 = s̃e3 = −1/16
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Wavelet compression

uJ(p) =
∑

k∈K0 cJ0
k φ

J0
k (p) +

∑j=J−1
j=J0

∑

m∈Mj d
j
mψ

j
m(p)

Test function

−1

0

1 −1
0

1
−1

−0.5

0

0.5

1

yx

z

Wavelet locations xJ
k without

compression at J = 5, #K5 = 10242
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uJ
≥(p) =
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k∈K0 cJ0
k φ

J0
k (p) +

∑j=J−1
j=J0

∑
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|d j
m|≥ǫ
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j
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j
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Wavelet approximation estimates

◮ Approximation error is
controlled by the wavelet
threshold ǫ
||uJ(p) − uJ

≥(p)||∞ ≤ c1ǫ
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Wavelet approximation estimates

◮ ǫ controls the total active grid
points N(ǫ) by the following
relation N(ǫ) ≤ c2ǫ

− n
k

◮ Therefore, approximation error
is controlled by active grid
points

||uJ(p) − uJ
≥(p)||∞ ≤ c3N(ǫ)−

k
n
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Calculation of Laplace-Beltrami operator on adaptive grid

∆Su(pj
i ) = 1

AS(pj
i
)

∑

k∈N(i)
cot αi,k+cot βi,k

2 [u(pj
k) − u(pj

i )]

where AS(pj
i ) is the area

of one-ring
neighborhood region
given by AS(pj

i ) =
1
8

∑

k∈N(i)(cotαi ,k +

cot βi ,k)‖pj
k − p

j
i ‖

2.

p
i
j

p
k
j

α
i,k

β
i,kp

k−1
j p

k+1
j

A
M

(p
i
j)
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◮ Convergence result for the
Laplace-Beltrami operator of
uJ
≥(p) for the test function
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Calculation of Laplace-Beltrami operator on adaptive grid
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Calculation of other differential operators on adaptive grid

◮ The flux term present in the spherical advection equation can
be expressed in the form of flux divergence and Jacobian
operators, ∇.(Vu) = ∇.(u∇χ) − J(u, ψ)

◮ JS(u(pj
i ), ψ(pj

i )) =
1

6AS(pj
i
)

∑

k∈N(i)(u(pj
k) + u(pj

i ))(ψ(pj
k ) − ψ(pj

i ))

◮

∇S .(u(pj
i ),∇Sχ(pj

i )) =
1

2AS(pj
i )

∑

k∈N(i)

cotαi ,k + cot βi ,k

2

(u(pj
k) + u(pj

i ))(ψ(pj
k ) − ψ(pj

i )).
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Application of spherical wavelets to compress turbulence

◮ Turbulence can be divided into two orthogonal parts: a
organized (coherent vortices), inhomogeneous, non-Gaussian
component and random noise (incoherent), homogeneous and
Gaussian component.

◮ The coherent vortices must be resolved, but the noise may be
modeled (or neglected entirely).

◮ The coherent vortices can be extracted using nonlinear
wavelet filtering.

This is the concept of Coherent Vortex Simulation which was
developed by Marie Farge, Kai Schneider and Nicholas Kevlahan in
flat geometries.
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Application of spherical wavelets to compress turbulence

Vorticity function. Reconstructed with 40%
significant wavelets.

Mani Mehra McMaster University

Adaptive wavelet collocation method for PDE’s on the sphere



o

Motivation Adaptive wavelet collocation method on the sphere Numerical simulation Conclusions and future directions

Application of spherical wavelets to compress turbulence
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Application of spherical wavelets to compress turbulence
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Diffusion equation

ut = ν∆Su + f

where f is localized source chosen such a way that the solution of
diffusion equation is given by

u(θ, φ, t) = 2e
−

(θ−θ0)2+(φ−φ0)2

ν(t+1)

Such equations arise in the application of Willmore flow, surface
diffusion flow etc.
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Diffusion Equation

Initial condition at t = 0 Adaptive grid at t = 0
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Diffusion Equation

Solution using AWCM at
t = 0.5

Adaptive grid at t = 0.5
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Diffusion Equation

The potential of adaptive
algorithm is measured by
compression coefficients

C =
N(ǫ = 0)

N(ǫ)
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The compression coefficient C

as a function of time,
ǫ = 10−5.
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Spherical advection equation

∂u

∂t
+ V .∇Su = 0,

The nondivergent driving velocity field V = (v1, v2) for all times is
given by

v1 = u0

(

cos(θ) cos(α) + sin(θ) cos(φ+
3π

2
) sin(α)

)

,

v2 = −u0 sin(φ+
3π

2
) sin(α).
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Spherical advection equation

∂u

∂t
+ V .∇Su = 0,

The initial cosine bell test pattern to be advected is given by

u(θ, φ) =

{

u0
2

(

1 + cos(πr
R

)

if r < R

0 if r ≥ R ,

where u0 = 1000m, radius R = a/3 and r = a arc
cos[sin(θc) sin(θ) + cos(θc) cos(θ) cos(φ− φc), which is the great
circle distance between (φ, θ) and the center (φc , θc) = (0, 0).
Such equations arise typically in the context of numerical weather
forecast or in climatological studies, and they provide some of the
most challenging and CPU time consuming problems in modern
computational fluid dynamics.
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Spherical advection equation
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Solid body rotation of cosine bell using AWCM for ǫ = 10−5.
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Spherical advection equation

Solution using AWCM Adapted grid for the solution.
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Spherical advection equation
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Conclusions

Adaptive wavelet collocation method:

◮ Used for time evolution problems.

◮ Dynamic adaptivity is necessary for atmospheric modeling.

◮ Fast O(N ) wavelet transform and O(N ) hierarchical finite
difference schemes over triangulated surface for the
differential operators is used.

◮ Verified convergence result predicted in theory.
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Future directions

◮ Implementation of wavelet bases based on optimal spherical
triangulation.

Ref.:Discrete Laplace-Beltrami operator on sphere and optimal
spherical triangulation, Int. J. Comp. Geometry Appl. 16 (1)
(2006) 75-93.

◮ Incorporation of appropriate time integration method in
spherical domain which takes advantage of wavelet multilevel
decomposition.

Ref.:An adaptive multilevel wavelet collocation method for elliptic
problems, J. Comp. Phys. 206 (2005) 412-431.

◮ Application of AWCM to more realistic models.
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