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Algorithm 929: A Suite on Wavelet Differentiation Algorithms
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A collection of the Matlab routines that compute the values of the scaling and wavelet functions (φ(x) and
ψ(x) respectively) and the derivative of an arbitrary function (periodic or non periodic) using wavelet bases
is presented. Initially, the case of Daubechies wavelets is taken and the procedure is explained for both
collocation and Galerkin approaches. For each case a Matlab routine is provided to compute the differenti-
ation matrix and the derivative of the function f (d) = D(d) f . Moreover, the convergence of the derivative is
shown graphically as a function of different parameters (the wavelet genus, D and the scale, J) for two test
functions. We then consider the use of spline wavelets.
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1. INTRODUCTION

The term differentiation matrix D(d) denotes the transformation between grid point
values of a function and its d-th order derivative. In the case of the Galerkin ap-
proach [Canuto et al. 1988] this matrix is the product of three matrices, that is,
D(d) = C−1 D(d)C. The matrix C, called the quadrature matrix, constructs an approxi-
mation, PN f , of a given function f (x) on the interval [a, b] from a vector of point values
of f (x), that is, from { f (xj) : 0 ≤ j ≤ N−1}. The approximation PN f belongs to a finite-
dimensional space. The second matrix, D(d) called the differentiation projection matrix
results from differentiating PN f and projecting it back to a finite-dimensional space.
Hence D(d) is defined by the linear transformation between PN f and PN(dd/dxd)PN f ,
(See Jameson [1993] for details). In the case of the collocation approach [Canuto et al.
1988] the elements of the matrix D(d) are values of the derivatives of the basis functions
(translates and dilates of the scaling function) at the grid points.

Differentiation matrices may be used to solve differential equations arising in the
real world. Many attractive mathematical properties of wavelets, for instance, efficient
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27:2 M. Mehra and K. Goyal

multiscale decompositions, compact support, vanishing moments, the existence of
fast wavelet transform and spectral type of convergence of numerical approxima-
tion of differential operators etc. together with the techniques for preconditioning
and compression of operators and matrices, motivated their use for numerical solu-
tion of PDEs. Wavelet methods have been developed for most kinds of PDEs such as
Laplace/Poisson equations [Dahmen 1997; Vasilyev and Kevlahan 2005] and advection
diffusion problems [Mehra and Kumar 2005], Burgers equation [Vasilyev and Bowman
2000], reaction-diffusion equations [Schneider et al. 1997], Stokes equation [Dahmen
et al. 2002] and for PDEs on manifolds [Mehra and Kevlahan 2008]. In this article
wavelet differentiation matrix for the functions on an interval will be examined. A
collection of the Matlab routines that compute the values of the scaling and wavelet
functions (φ(x) and ψ(x) respectively) and the derivative of an arbitrary function us-
ing Daubechies and spline wavelet bases is presented. Moreover, the convergence of
the derivative is shown graphically as a function of different parameters, that is, the
wavelet genus (D), and the scale J.

The article consists of three sections. Section 1 is this introduction. Section 2 de-
scribes the Galerkin and the collocation approach for construction of differentia-
tion matrices using Daubechies wavelets while Section 3 deals with spline wavelets.
Our software consists of 26 Matlab functions, which are described in an electronic
appendix.

2. DAUBECHIES WAVELET

2.1. Real Line

Multiresolution analysis (MRA) [Daubechies 1992; Mallat 1989] is the theory that
was used by I. Daubechies to show that for any nonnegative integer n there exists an
orthogonal wavelet with compact support such that all the derivatives up to order n
exist; this is characterized by the following axioms:

(1) V j ⊂ V j+1 (subspaces are nested),
(2) f (x) ∈ V j iff f (2x) ∈ V j+1 for all j ∈ Z (invariance to dilation),
(3)

⋃
jV j V j = L2(R),

(4) {φ(x − k)|k ∈ Z} is an orthonormal basis for V0 (invariance to translation) for a
function φ(x) ∈ V0; this is called the scaling function.

W j is defined as the orthogonal complement of V j in V j+1, that is, V j ⊥ W j and

V j+1 = V j ⊕ W j .

Since the set {φ(x − k)|k ∈ Z} is an orthonormal basis for V0 by axiom (4) of MRA, it
follows by repeated application of axiom (2) that {φ j

k(x) = 2 j/2φ(2 j x − k)|k ∈ Z} is an
orthonormal basis for V j and similarly, there exists a function ψ(x) ∈ W0 (which is
called the mother wavelet) such that {ψ j

k (x) = 2 j/2ψ(2 j x − k)|k ∈ Z} is an orthonormal
basis for W j .

Since φ0
0(x) = φ(x) ∈ V0 ⊂ V1, we have

φ(x) =
∞∑

k=−∞
hkφ

1
k (x),

where

hk =
∞∫

−∞
φ(x)φ1

k (x)dx.
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For Daubechies, compactly supported scaling functions, only finitely many hk, k =
0, 1, . . . D − 1 will be nonzero, where D is an even positive integer called the wavelet
genus. Hence we have

φ(x) =
√

2
D−1∑
k=0

hkφ(2x − k). (1)

Equation (1) is called the dilation equation (a two scale relation for the scaling
function) and and h0, h1, . . . , hD−1 are called low-pass filter coefficients. Similarly,
Daubechies compactly supported wavelet ψ(x) ∈ W0 ⊂ V1 is defined by

ψ(x) =
√

2
D−1∑
k=0

gkφ(2x − k). (2)

Equation (2) is called the wavelet equation (a two scale relation for the wavelet function)
and g0, g1, . . . , gD−1 are called high-pass filter coefficients. These filter coefficients are
connected by the relation gk = (−1)khD−1−k, k = 0, 1, . . . , D − 1. We make use of the
Matlab wavelet toolbox and especially the function wfilters which computes both the
low pass and the high pass filter coefficients. An important consequence of equations
(1) and (2) is that supp(φ) = supp(ψ) = [0, D−1], see [Daubechies 1992]. It follows that

supp
(
φ

j
k

) = supp
(
ψ

j
k

) = I j
k ,

where

I j
k =

[
k
2 j ,

k + D − 1
2 j

]
.

2.1.1. An Algorithm for the Numerical Evolution of φ and ψ. One should notice that there is
in general, no closed form analytic (explicit) formulae for either Daubechies scaling
functions, φ(x) or wavelet functions, ψ(x). An exception is the Haar scaling function
(φ(x) = 1 if x ∈ [0, 1), φ(x) = 0 otherwise) and the Haar wavelet function (ψ(x) = 1 if
x ∈ [0, .5), ψ(x) = −1 if x ∈ [.5, 1), ψ(x) = 0 otherwise). However, values for general
scaling and wavelet functions can be computed at dyadic points using the cascade
algorithm [Daubechies 1992; Strang and Nguyen 1996] as follows

Computing φ at integers. The scaling function φ has support on the interval [0, D − 1],
with φ(0) = 0 and φ(D − 1) = 0 for D ≥ 4 [Daubechies 1992].

By substituting x = 0, 1, . . . , D − 2 in (1), we obtain a homogeneous linear system of
equations. For D = 6 we have⎡

⎢⎢⎢⎣
φ(0)
φ(1)
φ(2)
φ(3)
φ(4)

⎤
⎥⎥⎥⎦ =

√
2

⎡
⎢⎢⎢⎣

h0
h2 h1 h0
h4 h3 h2 h1 h0

h5 h4 h3 h2
h5 h4

⎤
⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎣

φ(0)
φ(1)
φ(2)
φ(3)
φ(4)

⎤
⎥⎥⎥⎦ = A0�(0), (3)

where the vector-valued function �(x) is defined as

�(x) = [φ(x), φ(x + 1), . . . , φ(x + D − 2)]T .

It can be observed that solving (3) is equivalent to solving the eigenvalue problem

A0�(0) = λ�(0). (4)

The solution of (3) is the eigenvector of A0 corresponding to the eigenvalue λ = 1 (note
that the eigenvalues of A0 include λ = 2−m, m = 0, 1, . . . , D/2 − 1, [Strang and Nguyen
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1996]). The requirement that φ has unit area gives rise to the following result

D−1∑
k=0

φ(k) = 1

(see Nielsen [1998] for details). We use this result to fix the multiplicative constant
which arises from solving (4).

Computing φ at dyadic rationals. Having obtained �(0) from (3) we can again use (1) to
obtain φ at all the midpoints between the integers in the interval, namely the vector
�(1/2). Substituting x = 1

2 , 3
2 , 5

2 , . . . into (1) gives

�

(
1
2

)
=

⎡
⎢⎢⎢⎢⎢⎢⎣

φ( 1
2 )

φ( 3
2 )

φ( 5
2 )

φ( 7
2 )

φ( 9
2 )

⎤
⎥⎥⎥⎥⎥⎥⎦ =

√
2

⎡
⎢⎢⎢⎣

h1 h0
h3 h2 h1 h0
h5 h4 h3 h2 h1

h5 h4 h3
h5

⎤
⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎣

φ(0)
φ(1)
φ(2)
φ(3)
φ(4)

⎤
⎥⎥⎥⎦ = A1�(0). (5)

Next for the rationals of the form k/4, where k is odd, we obtain⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ( 1
4 )

φ( 3
4 )

φ( 5
4 )

φ( 7
4 )

φ( 9
4 )

φ( 11
4 )

φ( 13
4 )

φ( 15
4 )

φ( 17
4 )

φ( 19
4 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
√

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0
h1 h0
h2 h1 h0
h3 h2 h1 h0
h4 h3 h2 h1 h0
h5 h4 h3 h2 h1

h5 h4 h3 h2
h5 h4 h3

h5 h4
h5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(0)
φ( 1

2 )

φ( 3
2 )

φ( 5
2 )

φ( 7
2 )

φ( 9
2 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which can be written as

�

(
1
4

)
= A0�

(
1
2

)
,

�

(
3
4

)
= A1�

(
1
2

)
.

Using the same two matrices for all the steps in the algorithm we can con-
tinue as follows until a desired resolution 2q is obtained, for i = 2, 3, . . . , q and
k = 1, 3, 5, . . . , 2 j−1 − 1,

�

(
k
2i

)
= A0

(
k

2i−1

)
,

�

(
k
2i + 1

2

)
= A1

(
k

2i−1

)
.
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Fig. 1. Daubechies scaling function φ(x).

Function values of ψ can be computed from the values of φ using the wavelet equa-
tion (2)

ψ(m/2q) =
√

2
D−1∑
k=0

gkφ(2m/2q − k). (6)

The computation of φ and ψ at dyadic rationals is implemented by the function
cascade.m; more details may be found in the accompanied User Manual, Section 1.
The function φ(x) is plotted using cascade.m in Figure 1 for D = 4 and q = 8.

2.2. Periodic Domain

So far, our functions have been defined on the entire real line, for instance, f ∈ L2(R). In
most practical applications such as image processing, data fitting or problems involving
differential equations, the space domain is a finite interval, say, for simplicity, the
interval is [0, 1] and the function f is periodic, that is, f (0) = f (1). These cases can be
dealt with by using periodic scaling and wavelet functions that are defined as follows

Definition 2.1. Let φ ∈ L2(R) and ψ ∈ L2(R) be the basic scaling function and the
basic wavelet from an MRA as defined in Section 2.1. For any j, k ∈ Z we define the
1-periodic scaling function

φ̃
j
k(x) =

∞∑
n=−∞

φ
j
k(x + n) = 2 j/2

∞∑
n=−∞

φ(2 j(x + n) − k), x ∈ R,

and the 1-periodic wavelet

ψ̃
j

k (x) =
∞∑

n=−∞
ψ

j
k (x + n) = 2 j/2

∞∑
n=−∞

ψ(2 j(x + n) − k), x ∈ R. (7)

The 1-periodicity can be verified as follows

φ̃
j
k(x + 1) =

∞∑
n=−∞

φ
j
k(x + n + 1) =

∞∑
m=−∞

φ
j
k(x + m) = φ̃

j
k(x)

and similarly ψ̃
j

k (x + 1) = ψ̃
j

k (x).
Some of the important results regarding periodic scaling and wavelet functions [Nielsen
1998] are as follows.
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(1) φ̃
j
k(x) is constant and is equal to 2− j/2 for j ≤ 0.

(2) ψ̃
j

k (x) = 0 for j ≤ −1.
(3) φ̃

j
k(x) and ψ̃

j
k (x) are periodic in the shift parameter k with period 2 j for j > 0.

Now suppose

Ṽ j =
〈{

φ̃
j
k(x), x ∈ [0, 1]

}2 j−1

k=0

〉
and W̃ j =

〈{
ψ̃

j
k (x), x ∈ [0, 1]

}2 j−1

k=0

〉
,

it can be observed that the Ṽ j are nested in a similar way as the V j in axiom 1 of MRA
(see Section 2.1), that is,

Ṽ0 ⊂ Ṽ1 ⊂ Ṽ2 ⊂ · · · ⊂ L2([0, 1]),

and
⋃∞

j=0 Ṽ j = L2([0, 1]). The orthogonality, which is a property of nonperiodic scaling
and wavelet functions carried over to the periodic versions restricted to the interval
[0,1] implies that

Ṽ j ⊕ W̃ j = Ṽ j+1.

So the space L2([0, 1]) has the decomposition

L2([0, 1]) ≈ Ṽ J0 ⊕
⎛
⎝ ∞⊕

j=J0

W̃ j

⎞
⎠ ,

for some J0 > 0.

2.2.1. Evaluation of Scaling Function Coefficients. Suppose a function f ∈ L2([0, 1]), with
f (0) = f (1), is given and we wish to compute the projection of this function in the space
Ṽ j , that is,

PṼ j f (x) =
2 j−1∑
k=0

c j
kφ̃

j
k(x), x ∈ [0, 1]. (8)

Note that there are two natural ways to obtain the scaling function coefficients c j
k

in (8)

(1) Projection. Because of the orthogonality of the basis functions, the coefficients c j
k

can be obtained using the relation

c j
k =

∫
I

f (x)φ̃ j
k(x)dx.

This method is called orthogonal projection. The integral can be approximated by
any sufficiently accurate quadrature method.

(2) Interpolation. The coefficients c j
k are chosen such that the projection of f on V j , and

f coincides at the node points at level j, that is,

f
(

l
2r

)
=

2 j−1∑
k=0

c j
kφ̃

j
k

(
l

2r

)
, l = 0, 1, . . . , 2r − 1,

where r ∈ N is called the dyadic resolution of the function.
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Using the interpolation technique to find the c j
k we can obtain from (8)

f
(

l
2r

)
=

2 j−1∑
k=0

c j
kφ̃

j
k

(
l

2r

)

=
2 j−1∑
k=0

c j
k

∑
n∈Z

φ
j
k

(
l

2r + n
)

= 2 j/2
2 j−1∑
k=0

c j
k

∑
n∈Z

φ

(
m(l, k) + 2 j+qn

2q

)
,

where m(l, k) = l2 j+q−r − k2q. Now if j is such that 2 j ≥ D − 1, then we have

f
(

l
2r

)
= 2 j/2

2 j−1∑
k=0

c j
kφ

( 〈m(l, k)〉2 j+q

2q

)
, l = 0, 1, . . . , 2r − 1 (9)

(see Nielsen [1998] for details). From (9) we see that m(l, k) serves as an index into the
vector of precomputed values of φ. For this to make sense m(l, k) must be an integer,
which leads to the restriction

j + q − r ≥ 0.

Suppose c j = [c j
0, c j

1, . . . , c j
2 j−1]T and fr = [ f (0), f (1/2r), . . . , f ((2r − 1)/2r)]T , then (9)

can be written as

fr = Tr, jc j, (10)

where Tr, j is a matrix of size 2r × 2 j . For the case D = 4, r = 4 and j = 3, we have⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (0)
f ( 1

16 )

f ( 2
16 )

f ( 3
16 )

f ( 4
16 )

f ( 5
16 )

f ( 6
16 )

f ( 7
16 )

f ( 8
16 )

f ( 9
16 )

f ( 10
16 )

f ( 11
16 )

f ( 12
16 )

f ( 13
16 )

f ( 14
16 )

f ( 15
16 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2
3
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(0) φ(2) φ(1)
φ( 1

2 ) φ( 5
2 ) φ( 3

2 )
φ(1) φ(0) φ(2)

φ( 3
2 ) φ( 1

2 ) φ( 5
2 )

φ(2) φ(1) φ(0)

φ( 5
2 ) φ( 3

2 ) φ( 1
2 )

φ(2) φ(1) φ(0)

φ( 5
2 ) φ( 3

2 ) φ( 1
2 )

φ(2) φ(1) φ(0)

φ( 5
2 ) φ( 3

2 ) φ( 1
2 )

φ(2) φ(1) φ(0)

φ( 5
2 ) φ( 3

2 ) φ( 1
2 )

φ(2) φ(1) φ(0)

φ( 5
2 ) φ( 3

2 ) φ( 1
2 )

φ(2) φ(1) φ(0)

φ( 5
2 ) φ( 3

2 ) φ( 1
2 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
3

c1
3

c2
3

c3
3

c4
3

c5
3

c6
3

c7
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Given fr, calculating c j using (10) is termed discrete scaling function transformation
(DST) and given the c j , calculating fr using (10) is termed inverse discrete scaling
function transformation (IDST). We have implemented these transformations as the
functions dst.m and idst.m (see the accompanied User Manual, Section 2 for more
details).

2.2.2. Galerkin Approach.

The differentiation projection matrix.
Let f ∈ V j , then

f (d)(x) =
∞∑

l=−∞
c j

l φ
j(d)
l (x), x ∈ R, (11)

f (d) will in general not belong to V j so we project f (d) back onto V j

PV j f (d)(x) =
∞∑

k=−∞
c j(d)

k φ
j
k(x), x ∈ R,

where

c j(d)
k =

∫ ∞

−∞
f (d)(x)φ j

k(x)dx. (12)

Substituting (11) into (12) and doing some manipulations, we get

c j(d)
k =

∞∑
n=−∞

c j
n+k2 jd�d

n, −∞ < k < ∞, (13)

where

�d
n =

∫ ∞

−∞
φ(x)φ(d)

n (x)dx, n ∈ Z, (14)

are called connection coefficients. Now because φ(x) is compactly supported on [0, D−1],
it can be shown that support of φ(x) and φ(d)

n (x) overlap only for −(D − 2) ≤
n ≤ (D − 2), so there are only 2D − 3 nonzero connection coefficients. Hence (13)
reduces to

c j(d)
k =

D−2∑
n=2−D

c j
n+k2 jd�d

n, j, k ∈ Z. (15)

Now if f is 1-periodic function then

c j
k = c j

k+2 j , k ∈ Z

and

c j(d)
k = c j(d)

k+2 j , k ∈ Z.

Hence it is sufficient to consider 2 j coefficients of either type and (15) becomes

c j(d)
k =

D−2∑
n=2−D

c j
〈n+k〉2 j

2 jd�d
n, k = 0, 1, . . . , 2 j − 1,
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which can be written in matrix form as

c(d) = D(d)c, (16)

where [D(d)]k,〈n+k〉2 j = 2 jd�d
n, k = 0, 1, . . . , 2 j − 1; n = 2 − D, 3 − D, . . . , D − 2 and

c(d) = [
c j(d)

0 , c j(d)
1 , . . . , c j(d)

2 j−1

]
.

The matrix D(d) is the differentiation projection matrix. Here, under the assumption of
periodicity of f (x), the quadrature matrix C = T −1 (where T is the matrix Tr, j in (10))
and the differentiation projection matrix D(d) are circulant and hence commute. Thus
in this case D(d) = D(d) and

f (d) = D(d)f.

Note that if f is periodic with period L, then we have

f (d) = 1
LdD

(d)f.

The differentiation matrix has the following structure for D = 4 and j = 3

D(d) = 23d

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�d
0 �d

1 �d
2 0 0 0 (−1)d�d

2 (−1)d�d
1

(−1)d�d
1 �d

0 �d
1 �d

2 0 0 0 (−1)d�d
2

(−1)d�d
2 (−1)d�d

1 �d
0 �d

1 �d
2 0 0 0

0 (−1)d�d
2 (−1)d�d

1 �d
0 �d

1 �d
2 0 0

0 0 (−1)d�d
2 (−1)d�d

1 �d
0 �d

1 �d
2 0

0 0 0 (−1)d�d
2 (−1)d�d

1 �d
0 �d

1 �d
2

�d
2 0 0 0 (−1)d�d

2 (−1)d�d
1 �d

0 �d
1

�d
1 �d

2 0 0 0 (−1)d�d
2 (−1)d�d

1 �d
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that the property �d
n = (−1)d�d

−n (which can be easily verified) is used while
constructing the above matrix. An important case is d = 1, and we define

D = D(1).

We can now see that we need the set �d = {�d
n}D−2

n=2−D for the construction of differenti-
ation matrix.

Algorithm for computing connection coefficients. Using the dilation equation (1) we obtain

φl(x) = φ(x − l) =
√

2
D−1∑
k=0

hkφ(2(x − l) − k) =
√

2
D−1∑
k=0

hkφ2l+k(2x). (17)

Differentiating (17) d times gives

φ
(d)
l (x) = 2d

√
2

D−1∑
k=0

hkφ
(d)
2l+k(2x). (18)
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Substituting (1) and (18) into (14), we have

�d
n =

∫ ∞

−∞

[√
2

D−1∑
r=0

hrφr(2x)

][
2d

√
2

D−1∑
s=0

hsφ
(d)
2n+s(2x)

]
dx

= 2d+1
D−1∑
r=0

D−1∑
s=0

hrhs

∫ ∞

−∞
φr(2x)φ(d)

2n+s(2x)dx, x ← 2x

= 2d
D−1∑
r=0

D−1∑
s=0

hrhs

∫ ∞

−∞
φr(x)φ(d)

2n+s(x)dx, x ← x − r

= 2d
D−1∑
r=0

D−1∑
s=0

hrhs

∫ ∞

−∞
φ(x)φ(d)

2n+s−r(x)dx, x ← x − r,

or
D−1∑
r=0

D−1∑
s=0

hrhs�
d
2n+s−r = 1

2d �d
n, n ∈ [2 − D, D − 2]. (19)

Let m = 2n + s − r. It has already been explained that �d
m is nonzero only for m ∈

[2 − D, D − 2] and that s = r + m− 2n, as well as r, must be restricted to [0, D − 1].
This is fulfilled for max(0, 2n− m) ≤ r ≤ min(D− 1, D− 1 + 2n− m). Let p = 2n− m and
define

āp =
r2(p)∑

r=r1(p)

hrhr−p,

where r1(p) = max(0, p) and r2(p) = min(D − 1, D − 1 + p). Hence (19) becomes

D−2∑
m=2−D

ā2n−m�d
m = 1

2d �d
n, n ∈ [2 − D, D − 2],

which can be written in matrix form as

(A − 2−dI)�d = 0, (20)

where A is a matrix of order (2D − 3) with elements

[A]n,m = ā2n−m.

Equation (20) has a nontrivial solution if 2−d is an eigenvalue of A. Numerical calcula-
tions for D = 4, 6, . . . , 30 indicate that 2−d is an eigenvalue for d = 0, 1, . . . , D − 1. The
additional condition needed to normalize the solution is obtained by using the property
of vanishing moments, which is explained as follows:

Moments of the scaling functions. For a wavelet of genus D, the number of vanishing
moments is D/2 and this property implies that the scaling function can represent the
polynomials up to degree (D/2 − 1) exactly, that is,

xp =
∞∑

l=−∞
Mp

l φ(x − l), p = 0, 1, . . . , D/2 − 1, (21)
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where the pth moment of φ(x − l) is defined as

Mp
l =

∫ ∞

−∞
xpφ(x − l), l, p ∈ Z. (22)

It is known that the area under the scaling function φ(x) is 1, hence

M0
l = 1, l ∈ Z.

Let l = 0. The dilation equation (1) then yields

Mp
0 =

∫ ∞

−∞
xpφ(x)dx

=
√

2
D−1∑
k=0

ak

∫ ∞

−∞
xpφ(2x − k)dx

=
√

2
2p+1

D−1∑
k=0

ak

∫ ∞

−∞
ypφ(y − k)dy, y = 2x,

or

Mp
0 =

√
2

2p+1

D−1∑
k=0

akMp
k . (23)

Using the variable transformation y = x − l in (22)

Mp
l =

∫ ∞

−∞
(y + l)pφ(y)dy

=
p∑

n=0

(
p
n

)
lp−n

∫ ∞

−∞
ynφ(y)dy,

or

Mp
l =

p∑
n=0

(
p
n

)
lp−nMn

0 , (24)

Substituting (24) into (23) we obtain

Mp
0 =

√
2

2p+1

D−1∑
k=0

ak

p∑
n=0

(
p
n

)
kp−nMn

0

=
√

2
2p+1

p−1∑
n=0

(
p
n

)
Mn

0

D−1∑
k=0

akkp−n +
√

2
2p+1 Mp

0

D−1∑
k=0

ak︸ ︷︷ ︸√
2

,

and solving for Mp
0 yields

Mp
0 =

√
2

2(2p − 1)

p−1∑
n=0

(
p
n

)
Mn

0

D−1∑
k=0

akkp−n. (25)

Equation (25) can be used to determine the pth moment of φ(x), Mp
0 for any p > 0. The

translated moments Mp
l are then obtained by using (24). We have included in our suite

the function moments.m which implements (25) and computes the pth moments of φ(x).
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The normalisation condition is derived as follows: Differentiating (21) d times we
obtain

d! =
∞∑

l=−∞
Md

l φ(d)(x − l). (26)

Multiplying (26) by φ(x) and integrating we obtain

d!
∫ ∞

−∞
φ(x)dx =

∞∑
l=−∞

Md
l

∫ ∞

−∞
φ(x)φ(d)(x − l)dx

=
D−2∑

l=2−D

Md
l

∫ ∞

−∞
φ(x)φ(d)(x − l)dx.

Therefore, the additional condition to normalize the solution becomes
D−2∑

n=2−D

Md
n�d

n = d!. (27)

Hence �d is found as follows.

—Let vd be an eigenvector corresponding to the eigenvalue 2−d of matrix A.
—Then �d = kv for some constant k.
—The constant k is fixed by using (27).

Remark 2.2. There is an exception to the statement that 2−d is an eigenvalue of A
for d = 0, 1, . . . , D − 1. For D = 4 eigenvalues of A are

1
8

,
1
4

+ 6.4765 × 10−9i,
1
4

− 6.4765 × 10−9i,
1
2

, 1.

Consequently 1
4 is not an eigenvalue of A and the connection coefficients for the com-

bination D = 4, d = 2 are not well defined.

The functions conn.m and gal_difmatrix_periodic.m compute the connection coeffi-
cients and differential matrix respectively (see the accompanied User Manual, Section 4
for details).

Convergence results. If f (x) is a 1-periodic function and the error is defined as

E(d)( f, j) = max
k=0,1,...,2 j−1

∣∣∣∣[ f (d)
n

]
k − f (d)

(
k
2 j

)∣∣∣∣ ,
where f (d)

n and f (d) denotes the numerical and analytic value of the d-order derivative
of f , then the following convergence result holds

f ∈ CD(R) ⇒ E(1)( f, j) ≤ C2− jD, (28)

where CD(R) denotes the space of functions having continuous derivatives of order
≤ D and C is a constant. Assuming that a similar result holds for higher order of
differentiation, that is,

E(d)( f, j) ≤ C2− j R, (29)

where R probably depends on d and N. It follows that

R = log2(E(d)( f, j)) − log2(E(d)( f, j + 1)),

ACM Transactions on Mathematical Software, Vol. 39, No. 4, Article 27, Publication date: July 2013.



Algorithm 929: A Suite on Wavelet Differentiation Algorithms 27:13

2 2.5 3 3.5 4 4.5 5
10

−15

10
−10

10
−5

10
0

J

E
(1

) (f
,J

)

D=8
D=10
D=12
D=14

O(2−8J)

4 4.5 5 5.5 6 6.5 7
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

J

E
(1

) (f
,J

)

D=8
D=10
D=12
D=14

O(2−8J)

Fig. 2. E(1)( f, J) as a function of scale number J: (a) f (x) = 1 + cos(2πx); (b) f (x) = e−100(x− 1
2 )2 .
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Fig. 3. E(2)( f, J) as a function of scale number J: (a) f (x) = 1 + cos(2πx); (b) f (x) = e−100(x− 1
2 )2 .

and numerically

R = D − 2�d/2�, d = 0, 1, . . . , D − 1.

Remark 2.3. The convergence rate R = D for d = 1 can also be achieved for higher
orders by redefining the differentiation process for d > 1 as

f̄ (d) = (D ∗ · · · d times · · · ∗ D) f = Dd f,

that is, the d-order derivative of f is approximated by repeated application of the first
order differentiation matrix. Define

Ē(d)( f, j) = max
k=0,1,...,2 j−1

∣∣∣∣[ f̄ (d)
n

]
k
− f (d)

(
k
2 j

)∣∣∣∣ ,
then

Ē(d)( f, j) ≤ C2− j R̄, R̄ ∈ R,

with R̄ = D. See Nielsen [1998] for details.

Figure 2 shows the convergence of first order derivatives with respect to the scale J for
D = 8 and verifies the relation given in (28). Figure 3 shows the convergence of second
order derivatives with respect to the scale J for D = 8 and verifies the relation (29)
(note that R = 8−2�2/2� = 6). Figure 4 shows the convergence of first order derivatives
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Fig. 4. E(1)( f, J) as a function of wavelet genus D for J = 7: (a) f (x) = 1 + cos(2πx); (b) f (x) = e−100(x− 1
2 )2 .
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Fig. 5. E(2)( f, J) as a function of wavelet genus D for J = 7: (a) f (x) = 1 + cos(2πx); (b) f (x) = e−100(x− 1
2 )2 .

with respect to the wavelet genus D and verifies the relation in (28). Figure 5 shows
the convergence of second order derivatives with respect to D and verifies (29). These
figures were generated using gal_diff_periodic.m.

2.2.3. Collocation approach. The function f (x) is approximated in the space Ṽ j by

PṼ j f (x) =
2 j−1∑
k=0

c j
kφ̃

j
k(x), (30)

where c j
k are scaling function coefficients. Differentiating d (nonnegative integer) times

(30) gives

f (d)(x) = 2 jd
2 j−1∑
k=0

c j
kφ̃

j(d)
k (x). (31)

In the collocation method the approximated function will coincide with the actual
function at the nodal points in the domain at level j (collocation points), therefore (31)
becomes

f (d)(l/2 j) = 2 jd
2 j−1∑
k=0

c j
kφ̃

j(d)
k (l/2 j), where l = 0, . . . , 2 j − 1. (32)
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Therefore, calculating the scaling function coefficients, c j
k, reduces to solving a matrix

equation

f j(d) = D(d)c j, (33)

where f j(d) = ( f (d)(0), . . . , f (d)( 2 j−1
2 j )), c j = (c j

0, . . . , c j
2 j −1

2 j

) and matrix D(d) is given by

D(d) = 2 jd+ j/2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 φ
(d)
D−2 · · · φ

(d)
2 φ

(d)
1

φ
(d)
1 0 · · · ... 0

...
... φ

(d)
2

φ
(d)
2 φ

(d)
1 · · · ...

...
... φ

(d)
D−1

...
...

... · · · ...
...

... 0 φ
(d)
D−2

φ
(d)
D−2 φ

(d)
D−3 · · · ...

... · · · ... 0

0 φ
(d)
D−2 · · · 0

... · · · ...
...

... 0 · · · φ
(d)
1 0 · · · ...

...
...

... · · · ... φ
(d)
1 · · · ...

...
...

... · · · φ
(d)
D−3

... · · · 0
...

0 · · · · · · φ
(d)
D−2 φ

(d)
D−3 · · · φ

(d)
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To solve for c j
k using (33), we need to construct D(d), which requires the values of φ(d) at

the dyadic rationals.
To calculate the values of the φ(d) at the dyadic rationals, we differentiate (1) d times

to give

φ(d)(x) = 2d
√

2
D−1∑
k=0

hkφ
(d)(2x − k). (34)

Then putting x = 0, 1, . . . , D − 1 in (34) we obtain the system

2−d�(d)(0) = A0�
(d)(0), (35)

where matrix A0 is defined in (3). From (35) it is clear that �d(0) is nothing but the
eigenvector of the matrix A0 corresponding to the eigenvalue 2−d and the normalization
condition is obtained as follows:

Differentiate (21) d times to get

d! =
∞∑

l=−∞
Md

k φ(d)(x − l), (36)

and put x = 0 in (36) to give

d! =
∞∑

l=−∞
Md

k φ(d)(−l),

or

d! =
∞∑

l=−∞
(−1)dMd

k φ(d)(l),
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Fig. 6. E(1)( f, J) as a function of scale number J: (a) f (x) = 1 + cos(2πx); (b) f (x) = e−100(x− 1
2 )2 .

or

d! =
D−1∑
l=0

(−1)dMd
k φ(d)(l).

Now substituting x = 1
2 , 3

2 , 5
2 , . . . into (34), leads to a matrix equation of the form

�(d)
(

1
2

)
= 2d A1�

(d)
(

1
2

)
,

where A1 is given in (5). Continuing in a similar manner, we may obtain the val-
ues of �(d) to a desired resolution as we did with the cascade algorithm described in
Section 2.1.1. Differentiating (2) d times gives

ψ (d)(x) = 2d
√

2
D−1∑
k=0

gkφ
(d)(2x − k),

which can be used to calculate the values of ψ (d)(x) from the values of φ(d)(x). The
functions cascade_der.m and collo_difmatrix_periodic.m implement the algorithms
(see the accompanied user manual, Section 5, for more details).

Convergence results. The error is defined as

E(d)( f, j) =
∥∥∥∥[ f (d)

n

]
k − f (d)

(
k
2 j

)∥∥∥∥
2
,

where f (d)
n and f (d) denote the numerical and analytic values of the d-order derivative

of f . Figure 6 and Figure 7 show the error as a function of the scale number J for
d = 1 and d = 2 respectively. Figure 8 and Figure 9 show the error as a function of
the wavelet genus D for d = 1 and d = 2 respectively. From these graphs it can be
inferred that for first and second order derivatives, the method converges like K−α(D),
where K is the number of collocation points, that is, K = 2J and α(D) grows with D.
More precisely α(D) ≈ D − 5 for the first derivative and α(D) = D − 6 for the second
derivative. Also we can see that convergence is spectral with respect to the wavelet
genus D; see Garba [1996] for details. These figures were generated using the function
collo_diff_periodic.m.

2.3. Nonperiodic Domain

We next consider the case of an interval without the requirement of periodicity of
the function f . Again, for simplicity, we assume that the interval is [0, 1]. We explain
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Fig. 7. E(2)( f, J) as a function of scale number J: (a) f (x) = 1 + cos(2πx); (b) f (x) = e−100(x− 1
2 )2 .
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Fig. 8. E(1)( f, J) as a function of wavelet genus D for J = 7: (a) f (x) = 1 + cos(2πx); (b) f (x) = e−100(x− 1
2 )2 .
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Fig. 9. E(2)( f, J) as a function of wavelet genus D for J = 7: (a) f (x) = 1 + cos(2πx); (b) f (x) = e−100(x− 1
2 )2 .

the construction of the wavelet basis on an interval where the scaling functions and
wavelets away from the boundary are the usual Daubechies scaling functions and
wavelets. At the boundaries, boundary scaling functions are constructed such that the
polynomials of degree up to the number of vanishing moments of the wavelet can
be reproduced exactly across the entire interval. The boundary function construction
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k (x) for D = 4.

begins by building independent, but not orthogonal, functions

φ̃k(x) =
2M−2∑
n=k

(
n
k

)
φ(x + n − M + 1),

where φ(x) is the usual Daubechies scaling functions and M(= D/2) is the number of
vanishing moments of the associated wavelet. These functions are compactly supported
and their staggered supports are given by

supp(φ̃k) = [0, 2M − 1 − k].

The staggered support yields independence, and the boundary functions are defined by
simply orthonormalizing these functions using the Gram-Schmidt method.

The left and right boundary scaling functions are defined recursively as follows

φL
k (x) =

√
2

M−1∑
l=0

hL
k,lφ

L
l (2x) +

√
2

M+2k∑
m=M

hL
k,mφ(2x − m), (37)

φR
k (x) =

√
2

M−1∑
l=0

hR
k,lφ

R
l (2x) +

√
2

M+2k∑
m=M

hR
k,mφ(2x + m+ 1). (38)

Note that φL
k (x) = φ

L,0
k (x) and φR

k (x) = φ
R,0
k (x). If we work on the interval [0, 1] and start

with a scale fine enough so that the two edges do not interact, that is, 2 j ≥ 2M, then
there are the following.

—2 j − 2M total interior scaling functions φ
j
k(x), k = M, . . . , 2 j − M − 1.

—M total left boundary scaling functions φ
L, j
k (x), k = 0, 1, . . . , M − 1.

—M total right boundary scaling functions φ
R, j
k (x), k = 2 j − M, . . . , 2 j − 1.

Moreover, hL = {hL
k,l, k = M, . . . , 2 j − M − 1, l = 0, . . . , M + 2k} and hR = {hR

k,l, k =
2 j − M, . . . , 2 j − 1, l = 0, . . . , M + 2k} are the left and right low pass filter coefficients
respectively [Cohen et al. 1993]. Routines L_daubfilt.m and R_daubfilt.m are available
to compute the coefficients hL and hR respectively. Figures 10 and 11 show the left and
right boundary scaling functions for D = 4.
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Fig. 11. Right boundary scaling functions φR
k (x) for D = 4.

2.3.1. Evaluation of scaling function coefficients. Let f (x) ∈ L2([0, 1]), then

PV j f (x) =
N−1∑
k=0

c j
kbj

k(x), (39)

where {bj
k(x), k = 0, . . . , N − 1} denotes the basis functions of the space V j , N = 2 j and

c j
k = 〈 f, bj

k〉 (because of the orthonormality of bj
k) and

bj
k(x) =

⎧⎪⎨
⎪⎩

φ
L, j
k (x), supp

(
φ

L, j
k

) = [0, M + k], k = 0, . . . , M − 1
φ

j
k(x), supp(φk j) = [−M + 1, M], k = M, . . . , N − M − 1

φ
R, j
k (x), supp

(
φ

R, j
k

) = [k − M + 1, N], k = N − M, . . . , 2 j − 1

We will use the technique of orthogonal projection explained in Section 2.2.1 to obtain
the c j

k of (39) [Jameson 1996]

c j
k = 〈

f, bj
k

〉
k = 0, 1, . . . , N − 1.

Using the interval [0, N] and j = 0 we have

cL
k = cL,0

k =
∫ N

0
φL

k (x) f (x)dx, k = 0, 1, . . . , M − 1

ck = c0
k =

∫ N

0
φ(x − k) f (x)dx, k = M, . . . , N − M − 1 (40)

cR
k = cR,0

k =
∫ N

0
φR

k (x) f (x)dx, k = N − M, . . . , N − 1.

A quadrature method is required to approximate the integrals in (40). For simplicity
assume that D = 4 and N = 8 and let the grid chosen be

�x = [
.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

]T

then

cL
0 =

∫ 8

0
φL

0 (x) f (x)dx. (41)
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To calculate the integral on the right-hand side of (41) we use the quadrature formula∫ 8

0
φL

0 f (x)dx = s1,1 f (0.5) + s1,2 f (1.5), (42)

so that
cL

0 = s1,1 f (0.5) + s1,2 f (1.5).
If f (x) = 1, we get from (42) ∫ 8

0
φL

0 (x)dx = s1,11 + s1,21 (43)

and if f (x) = x, (42) implies∫ 8

0
φL

0 (x)xdx = s1,10.5 + s1,21.5. (44)

Equations (43) and (44) can be written in matrix form as[ ∫ 8
0 φL

0 (x)dx∫ 8
0 φL

0 (x)xdx

]
=

[
1 1
.5 1.5

] [
s1,1
s1,2

]
. (45)

The left-hand side of (45) is just the vector of moments of the left hand side boundary
scaling functions. Similarly, while calculating the cR

k and ck, we need moments of both
the right-hand side boundary scaling functions φR

k (x) and the usual Daubechies scaling
function φ(x). The moments of φ(x) have already been explained in Section 2.2.2.

Moments of the boundary scaling functions. The pth moment of φL
k is defined as

mL,p
k =

∫ ∞

0
φL

k (x)xpdx.

We begin by calculating the 0th moment of φL
k

mL,0
k =

∫ ∞

0
φL

k (x)x0dx =
∫ ∞

0
φL

k (x)dx.

Integrating (37) with respect to x from 0 to ∞,∫ ∞

0
φL

k (x)dx =
√

2
M−1∑
l=0

hL
k,l

∫ ∞

0
φL

l (2x)dx +
√

2
M+2k∑
m=M

hL
k,m

∫ ∞

0
φ(2x − m)dx

then substituting y = 2x gives, after some manipulation,

√
2
∫ ∞

0
φL

k (x)dx =
M−1∑
l=0

hL
k,l

∫ ∞

0
φL

l (x)dx +
M+2k∑
m=M

hL
k,m

∫ ∞

0
φ(x − m)dx,

that is,

√
2mL,0

k =
M−1∑
l=0

hL
k,lm

0
l +

M+2k∑
m=M

hL
k,mM0

m, k = 0, . . . , M − 1. (46)

Hence we obtain a system of M equations which can be solved for mL,0
k , k = 0, . . . , M−1.

For D = 4 the system can be written in the form[
hL

0,0 − √
2 hL

0,1

hL
1,0 hL

1,1 − √
2

]
×

[
mL,0

0

mL,0
1

]
=

[
−hL

0,2

−hL
1,2 − hL

1,3 − hL
1,4

]
. (47)
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Fig. 12. Quadrature matrix C.

Once the moments are calculated, we can use (42) and (45) to obtain the matrix quadra-
ture matrix C such that

c = Cf.

The structure of the matrix C is given in Figure 12.
The functions L_moments.m, R_moments.m and dstmat_nonper.m are available to com-

pute the left and right side boundary scaling functions and the quadrature matrix
respectively. More details of their implementations and use may be found in the ac-
companied User Manual, Sections 7 and 8.

2.3.2. Galerkin Approach.

The differentiation projection matrix. Differentiating (39) with respect to x we get

d
dx

PV j f (x) =
N−1∑
k=0

c j
kb(1) j

k (x), (48)

where b(1) j
k (x) = d

dx bj
k(x). The derivative takes PV j f (x) out of V j . Projecting back into V j

we obtain

PV j
d

dx
PV j f (x) =

N−1∑
l=0

〈
d

dx
PV j f, bj

l

〉
bj

l (x),

which after using (48) becomes

PV j
d

dx
PV j f (x) =

N−1∑
l=0

N−1∑
k=0

sk

〈
b(1) j

k , bj
l

〉
bj

l (x).

The elements 〈b(1) j
k , bj

l 〉 comprise the differentiation projection matrix D(1). To find the
elements of D(1) we need to find the interaction of the derivative of each basis function
with every other basis function. Note that the left- and right-hand side boundary
functions do not interact with each other. For simplicity, assume that j = 0. We define
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the following terms for the left-hand side boundary scaling functions

ρL
k,p =

∫
I
φ

(1)L
k (x)φL

p(x)dx,

αL
m,i =

∫
I
φ(1)(x − m)φL

i (x)dx,

βL
l,q =

∫
I
φ

(1)L
l (x)φ(x − q)dx,

rm,q = rq−m =
∫

I
φ(1)(x − m)φ(x − q)dx,

(49)

with similar definitions for the right-hand side. With this notation, the matrix D(1) for
D = 4 and j = 3 will take the form

D(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρL
0,0 ρL

1,0 αL
2,0 0 0 0 0 0

ρL
0,1 ρL

1,1 αL
2,1 αL

3,1 0 0 0 0
βL

0,2 βL
1,2 r0 r1 r2 0 0 0

0 βL
1,3 r−1 r0 r1 r2 0 0

0 0 r−2 r−1 r0 r1 βR
1,4 0

0 0 0 r−2 r−1 r0 βR
1,5 βR

0,5

0 0 0 0 αR
4,1 αR

5,1 ρR
1,1 ρR

0,1

0 0 0 0 0 αR
5,0 ρR

1,0 ρR
0,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Next we differentiate (37) with respect to x to get

d
dx

φL
k (x) = 2

√
2

M−1∑
l=0

hL
k,lφ

(1)L
l (2x) + 2

√
2

M+2k∑
m=M

hL
k,mφ(1)(2x − m)

then multiply by φL
p(x) and integrate to get∫

I
φ

(1)L
k (x)φL

p(x)dx = 4
M−1∑
l=0

M−1∑
i=0

hL
k,lh

L
p,i

∫
I
φ

(1)L
l (2x)φL

i (2x)dx

+ 4
M+2k∑
m=M

M−1∑
i=0

hL
p,ih

L
k,m

∫
I
φL

i (2x)φ(1)(2x − m)dx

+ 4
M−1∑
l=0

M+2p∑
q=M

hL
k,lh

L
p,q

∫
I
φ

(1)L
l (2x)φ(2x − q)dx

+ 4
M+2k∑
m=M

M+2p∑
q=M

hL
k,mhL

p,q

∫
I
φ(1)(2x − m)φ(2x − q)dx.

(50)

Now using the symbols defined in (49), we may write (50) as

1
2

ρL
k,p =

M−1∑
l=0

M−1∑
i=0

hL
k,lh

L
p,iρ

L
l,i +

M+2k∑
m=M

M−1∑
i=0

hL
p,ih

L
k,mαL

m,i

+
M−1∑
l=0

M+2p∑
q=M

hL
k,lh

L
p,qβ

L
l,q +

M+2k∑
m=M

M+2p∑
q=N

hL
k,mhL

p,qrm,q.

(51)
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A similar relation for ρR
k,p may be obtained using (38). Note that the coefficient rm,q is

just the connection coefficient defined in Section 2.2.2 and the Matlab function conn.m
will calculate these coefficients. Also, it is easy to observe that

βL
i,m = −αL

m,i and βR
i,m = −αR

m,i,

and hence we only need to calculate αL
m,i and αR

m,i. The algorithm for the calculation of
αL

m,i is as follows; we have

αL
m,i =

∫
I
φ(1)(x − m)φL

i (x)dx, i = 0, . . . , M − 1, (52)

and from (1)

φ(1)(x − m) = 2
√

2
M∑

k=−M+1

hkφ
(1)(2x − (2m+ k)). (53)

Now using (37) and (53) in (52) and after some manipulation we obtain

αL
m,i = 2

M∑
k=−M+1

M−1∑
l=0

hkhL
i,lα

L
2m+k,l

+ 2
M∑

k=−M+1

M+2k∑
p=M

hKhL
i,pr2m+k,p

(54)

Calculation of {ρL
k,p}: First consider the case with k = p, that is, {ρL

k,p|k = p}, where

ρL
k,k =

∫ ∞

0
φ

(1)L
k (x)φL

k (x)dx.

Applying integration by parts, we obtain

ρL
k,k = (

φL
k (x)

)2 |∞0 −
∫ ∞

0
φL

k (x)φ(1)L
k (x)dx.

or

2ρL
k,k = (

φL
k (x)

)2 |∞0
Since φL

k (x) = 0 at x = ∞, we have

ρL
k,k = −

(
φL

k (0)
)2

2
. (55)

We can now use (37) to calculate φL
k (0). A number of Matlab functions are available to

perform these computations, see the accompanied User manual, Sections 9, 10, 11.

3. SPLINE-BASED WAVELET

Since the Daubechies scaling and wavelet functions do not have explicit forms, they
cannot be used efficiently in some situations. In the case of biorthogonal spline wavelets,
the basic scaling and wavelet functions are splines, and hence have explicit expressions.
To the best of our knowledge, B-splines are the only known scaling functions with an
explicit representation. The only price we have to pay is loss of orthogonality.

The β0(x) (B-spline of order 0) is the characteristic function in the interval [− 1
2 , 1

2 ). All
B-splines of higher order (βn(x)) are generated from β0(x) using the recurrence relation
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βn(x) = β0(x)∗βn−1(x) (where ‘*’ denotes the convolution operator); these have a number
of attractive properties. The most important property is their compact support which
allows them to be used as scaling function. In fact, the support of these functions is
minimal among all polynomial splines of order n.

B-splines are symmetric, bell-shaped functions and have compact support given by
[−n+1

2 , n+1
2 ], [Unser and Aldroubi 1992]. An explicit formula for βn(x) is:

βn(x) =
n+1∑
j=0

(−1) j

n!

(
n + 1

j

)[
x + n + 1

2
− j

]n

+
, (56)

where [x]n
+ = max{0, x}n is the one-sided power function of degree n.

For each positive integer n, let Sn be the space of polynomial splines of order n with
knot sequence Z. A fundamental theorem states that every polynomial spline function
(sn(x)) of a given degree can be uniquely represented as a linear combination of shifted
B-splines of the same degree (the term B-spline is short for basis-spline), that is,

sn(x) =
∞∑

k=−∞
pkβ

n(x − k). (57)

The set {φ0
k(x) = φ(x − k) = sn(x − k) : k ∈ Z} is a basis for V0 provided the sequence

{pk} is an invertible convolution operator from l2 to itself (note that there are several
ways to select the scaling function when dealing with spline wavelets.). Now, {φ j

k(x) =
2 j/2φ(2 j x − k), k ∈ Z} is a basis for V j when n is odd, hence n is assumed to be odd. The
dilation relation

φ(x) =
∞∑

k=−∞
hkφ(2x − k), (58)

is satisfied by the φ(x) and the wavelet function ψ(x) is defined such that

ψ(x) =
∞∑

k=−∞
gkφ(2x − k).

The dual scaling function φ̃(x) and dual wavelet function ψ̃(x) are not splines and
no closed form formula exists for them [Urban 2009], but these functions satisfy
the dilation relation φ̃(x) = ∑∞

k=−∞ h̃kφ̃(2x − k) and the wavelet relation ψ̃(x) =∑∞
k=−∞ g̃kφ̃(2x − k); hence the cascade algorithm may be used to calculate the values of

φ̃(x) and ψ̃(x).
For linear splines (n = 1) and p0 = 1; pk = 0 for k �= 0, (57) gives us φ(x) = βn(x).

Figure 13 shows the functions φ(x) and ψ(x) while φ̃(x) and ψ̃(x) are shown in
Figure 14.

The two sequences {V j : j ∈ Z} and {Ṽ j : j ∈ Z} satisfy the first three axioms of MRA
of Section 2.1 but not the fourth. The following relation does hold:

V j+1 = V j + W j, Ṽ j+1 = Ṽ j + W̃ j .

The biorthogonality implies that W j is not necessarily orthogonal to V j but it is to Ṽ j ,
whereas W̃ j is not necessarily orthogonal to Ṽ j but is to V j .

For any f (x) ∈ L2(R) we have

PV0 f (x) =
∑

k

〈 f, φ̃k〉φk(x) =
∑

k

c0
kφk(x), (59)
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Fig. 13. (a) Linear spline scaling function φ(x). (b) Linear spline wavelet function ψ(x).

−2 −1 0 1 2 3
−2

−1

0

1

2

3

4

5

x

φ̃
(x

)

−2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

5

6

x

ψ̃
(x

)

Fig. 14. (a) Linear spline dual scaling function φ̃(x). (b) Linear spline dual wavelet function ψ̃(x).

Using (57) in (59) we obtain

PV0 f (x) =
∑

k

c0
k

∑
m

pk,mβn(x − m) =
∑

k

∑
m

c0
k pk,mβn

m(x).

Using the interpolation technique explained in Section 2.2.1 with the set of integers as
node points we have

f (l) =
∑

k

∑
m

c0
k pk,mβn

m(l), l ∈ Z,

or

f (l) =
∑

k

[∑
m

pk,mβn
m(l)

]
c0

k, l ∈ Z,

which can be written as

f = (Pb)T c = T c.

Hence the required quadrature matrix is

C = T −1 = ((Pb)T )−1. (60)
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Fig. 15. (a) Scaling function φ(x). (b) Boundary scaling function φL(x).

Let Al,m = 〈β(1)n(m), βn(l)〉, Bm,l = 〈βn(m), βn(l)〉 and b(l, m) = βn(l − m), then the
differentiation matrix D(1) [Jameson 1995] is given by

D(1) = bT B−1 A(bT )−1. (61)

For the periodic domain, the three matrices b, Aand Bare circulant and hence commute
yielding D(1) = B−1 A.

For a nonperiodic domain, if the boundary basis functions are constructed using
truncated B-splines, then the matrix b of (61) is an ill-conditioned matrix for n > 1.
Hence the inversion of matrix b will introduce a huge error. An alternative way to deal
with the nonperiodic domain is explained as follows.

Suppose the interval is I = [0, N]. We can translate the B-spline, βn(x), given by (56)
so that its support becomes [0, n + 1]. In this case βn(x) is given by

βn(x) =
n+1∑
j=0

(−1) j

n!

(
n + 1

j

)
[x − j]n

+ .

To construct an MRA for the Sobolov space H2
0(I), two scaling functions are considered,

an interior scaling function φ(x) and left hand side boundary scaling function φL(x)
given as follows

φ(x) = β3(x) = 1
6

4∑
j=0

(−1) j
(

4
j

)
[x − j]3

+ ,

and

φL(x) = φL
0 (x) = 3

2
x2

+ − 11
12

x3
+ + 3

2
(x − 1)3

+ − 3
4

(x − 2)3
+.

Figure 15 shows φ(x) and φL(x).
Let V j = span{φL, j(x); φ j

k(x) : 1 ≤ 2 j ≤ N − 3; φR, j(x) = φL, j(N − x)}, then {V j} j∈Z+

forms an MRA of H2
0(I). If {xi : i = 0, . . . , N} is the grid used and hi = xi − xi−1, then

the second-order differentiation matrix is given by

D(2) = T (−1)
1 (T2 + �),

ACM Transactions on Mathematical Software, Vol. 39, No. 4, Article 27, Publication date: July 2013.



Algorithm 929: A Suite on Wavelet Differentiation Algorithms 27:27

where

T1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1
3

h1
6 0

h1
h1+h2

2 h2
h1+h2

. . . . . . . . .
hi

hi+hi+1
2 hi+1

hi+hi+1

. . . . . . . . .
hN−1

hN−1+hN
2 hN

hN−1+hN

0 hN
6

hN
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

and

T2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
h1

1
h1

6
h1(h1+h2) − 6

h1+h2

(
1
h1

+ 1
h2

)
6

h2(h1+h2)

. . . . . . . . .
6

hN−1(hN−1+hN) − 6
hN−1+hN

(
1

hN−1
+ 1

hN

)
6

hN(hN−1+hN)

1
hN

− 1
hN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

� is defined such that ⎛
⎜⎜⎜⎜⎝

f
′
(0)
0
...
0

f
′
(N)

⎞
⎟⎟⎟⎟⎠ = �

⎛
⎜⎜⎜⎜⎝

f (0)
f (1)

...
f (N − 1)

f (N)

⎞
⎟⎟⎟⎟⎠ .

The first order differentiation matrix is given by

D(1) = H1D(2) + H2,

where

(H1)11 = 2(H1)12 = −h1

3

(H1)ii = 2(H1)ii−1 = hi−1

3
i = 2, . . . , N

(H1)N+1N+1 = 2(H1)N+1N = hN

3
,

and

(H2)11 = −(H2)12 = −h−1
1

(H2)ii = −(H2)ii−1 = h−1
i−1 i = 2, . . . , N

(H2)N+1N+1 = −(H2)N+1N = −h−1
N .

See Cai and Wang [1996] and Kumar and Mehra [2007] for details. Note that the
differentiation matrix obtained above is the same as the differentiation matrix obtained
by the collocation method using splines [Gerald and Wheatley 2004].

ELECTRONIC APPENDIX

The electronic appendix to this article is available in the ACM Digital Library.
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