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Abstract This work presents a new adaptive multilevel approximation of the
gradient operator on a recursively refined spherical geodesic grid. The multilevel
structure provides a simple way to adapt the computation to the local struc-
ture of the gradient operator so that high resolution computations are performed
only in regions where singularities or sharp transitions occur. This multilevel
approximation of the gradient operator is used to solve the linear spherical
advection equation for both time-independent and time-dependent wind field
geophysical test cases. In contrast with other approximation schemes, this
approach can be extended easily to other curved manifolds by choosing
an appropriate coarse approximation and using recursive surface subdivision.
The results indicate that the adaptive gradient calculation and the solu-
tion of spherical advection equation accurate, efficient and free of numerical
dispersion.
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1 Introduction

Many physical systems are characterized by a wide range of active spatial and tem-
poral scales. In addition, applications in geophysics and medicine require tools for
analyzing data on a sphere or on other regular closed surfaces [1, 2]. These tools
often rely on computing the gradient of a function defined on the curved surface.
Numerical approximation of the gradient on the sphere is also necessary to model
the tropical atmosphere [3], for transportation problems [4], in image processing [5]
and in computer vision [6]. Moreover, in image processing gradient operators are
used in the detection of edges and for estimating their local orientation. In medical
imaging [7], gradients are used to estimate the direction of surface normals when
processing volumetric data. Gradients are also required to evaluate the source term in
turbulence models, such as large eddy simulation (LES). In this paper we introduce
a new way to approximate the gradient operator on the sphere for functions contain-
ing localized small scale structure (i.e. sharp transitions). This approach is adaptive,
computationally efficient, and does not suffer from numerical dispersion.

Operational models in atmospheric physics, meteorology and climatology are
increasingly based on spherical geodesic grids. The main reason for the choice of
this grid is its quasi-uniform convergence on the sphere, which avoids the prob-
lems associated with the traditional latitude-longitude grid with the approximation of
crucial differential operators[8] (e.g. Laplacian, Jacobian, divergence and gradient).
Accurate and stable numerical schemes, together with consistent physical parameter-
izations, are needed for atmospheric simulations. In addition to these requirements,
computational efficiency is necessary for long-term simulations, which means higher
resolutions should be used only in regions with fine structure. Furthermore, in many
situations the small spatial scales are highly localized, and thus efficient solution of
the problem requires a locally adapted grid. Wavelets provide a natural way of deal-
ing with this class of problems. Their power lies in the fact that they only require a
small number of coefficients to accurately represent smooth functions and large data
sets.

Wavelet analysis and approximation is now used in many areas, including
signal processing, data and image compression, solution of partial differential
equations (PDEs) and modelling multi-scale phenomena. Well-known orthogo-
nal and continuous wavelets include the Daubechies wavelet [9], Coiflets [9],
Meyer wavelet [10] and Morlet wavelet [9]. Wavelet transforms developed in
the 1980s (so-called first generation wavelets) were constructed in Fourier space
using basis functions that are dilations and translations of a single function (the
mother wavelet). These wavelets were therefore limited to flat geometries and
simple domains. We use Swelden’s [11] second generation wavelets to over-
come these limitations, which allows wavelets to be defined on general curved
surfaces.

A dynamically adaptive multilevel wavelet collocation method for the solution
of partial differential equations in flat geometry and finite domains was devel-
oped by Vasilyev et al. [12, 13]. Adaptive wavelet methods have been developed
for other applications in [14–17]. Recently, this adaptive wavelet collocation meth-
ods has been extended from flat geometry to spherical geometry by Mehra and
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Kevlahan [18] and subsequently extended by [19, 20]. The new adaptive multiscale
gradient operator defined here extends the applicability and power of such wavelet
methods.

An important application of this new gradient operator approximation is to advec-
tion. Since geophysical fluid motions on all scales are dominated by the advection
process, the numerical solution to the advection problem is crucial for the overall
accuracy of the flow solver. Furthermore, in physical–chemical problems exact dis-
crete conservation of certain physical quantities, such as mass, is highly desirable.
In [18] the advection equation on a curved surface was approximated based on the
conservation form,

∂u

∂t
+ ∇ · ( �V u) = ∂u

∂t
+ ∇ · (u∇χ) − J (u, ψ). (1)

This representation uses the Helmholtz–Hodge decomposition of the velocity field V
into two scalar potentials, χ and ψ ,

�V = k × ∇ψ + ∇χ, (2)

where k is the unit vector normal to the surface, ψ is the stream function representing
the divergence-free part, and χ is the velocity potential representing the curl-free part.
The Jacobian operator is defined by J (α, β) = k · (∇α × ∇β) for arbitrary scalar
functions α and β.

Although the flux–divergence form of the advection Eq. 1 is well suited to col-
located numerical approximations of the shallow-water equations on the sphere
[21], it is computationally expensive as it requires solving two elliptic equations
to find the two scalar potentials χ and ψ from the velocity field �V at each time
step. In addition, in [18] we found that it suffers from numerical dispersion when
used in the linear advection equation on the sphere. Numerical dispersion is unde-
sirable for advection problems as it leads to large accumulated errors when the
equations are integrated over long times. Thus, it is often preferable to approxi-
mate the advection operator directly in non-conservation form using the gradient
operator,

∇ · ( �V u) = �V · ∇u + u∇ · �V . (3)

The objective of this paper is to derive a computationally efficient non-dispersive
multilevel wavelet approximation of the gradient operator on an adaptive spherical
geodesic grid contrary to [18] where the discrete adaptive approximations of the dif-
ferential operators were not optimized for particular applications. Therefore, our aim
is to correct these shortcomings (mentioned in previous paragraph) by developing
a computationally efficient dispersion-free dynamically adaptive implementation of
the advection operator suitable for geophysical flows on the sphere. This required
developing a new adaptive multi-level discretization of the gradient operator and test-
ing that it is computationally efficient and dispersion free on the sphere. In addition,
the adaptive grid must remain stable for long times (i.e. the adaptive grid should be
simply translated and not spread or deform when considering the linear advection
problem).
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In the current paper, wavelets are used to adapt the computational grid (and
hence compress the gradient operator), while finite differences are used to approxi-
mate gradient operator. The accuracy of both the gradient operator (first and second
component) is controlled by a tolerance parameter ε. Using standard test cases
from [22] we verify that the method indeed eliminates numerical dispersion and,
because it is no longer necessary to solve two Poisson problems at each time
step, it is far more computationally efficient. An important goal was to ensure
that the dynamically adaptive grid properly tracks advected structures, without grid
noise or spreading. To address the performance our method furthermore, we con-
sider highly deformed linear advection problems on the sphere [4]. Grid stability
and minimization of dispersive errors for advection problems is vital for efficient
dynamically adaptive methods over long times and is one of the major contri-
butions of this paper. Further, the strength of this new approximation method is
that it can be extended easily to any smooth curved surface (or other complex
domains), while retaining the freedom to choose the wavelet basis depending on the
application.

This paper is organized as follows. In Section 2 we introduce the construction of
the wavelet transform on the multiscale spherical geodesic grid system. The approx-
imation of gradient operator on an adaptive spherical geodesic grid is presented in
Section 3. In Section 4 we apply the method to four stationary test cases for gradient
operators: (1) an initial condition introduced by Heikes and Randall [21], (2) a Gaus-
sian function as initial condition, and (3) turbulence data. Finally, (4) the multilevel
approximation of gradient operator is applied to the solution of the spherical advec-
tion equation for both time-independent and time-dependent wind field geophysical
test cases.

2 Wavelet transform on the spherical geodesic grid system

Various grid construction methods based on recursive subdivision of the icosa-
hedron have been proposed, for example by Sadourny et al. [23], Williamson
[22] and Masuda and Ohnishi [24]. Such geodesic grids have already been used
as the basis for simulations of the shallow water equations [21] and reaction–
diffusion equations on the sphere [25]. In general, the icosahedron is recursively
refined by bisecting edges of the existing grid (i.e. dyadic refinement). How-
ever, for large numbers of subdivisions (e.g. greater than eight or nine) the
grid becomes increasingly non-uniform, which can lower the convergence rate of
interpolation on the grid. To correct this non-uniformity the grid points can be
redistributed, or the interpolation and differential operators on the grid can be
modified [21].

To construct a spherical geodesic grid (also called icosahedral–hexagonal grid),
we begin with a platonic solid (see Fig. 1) with spherical triangular faces. Each
triangular face is then subdivided into four smaller spherical triangles. A variety
of construction methods have been proposed for spherical geodesic grids [21, 23].
Here we consider only the simplest edge bisection method for which the num-
ber of grid points at subdivision level j is Kj = 10 × 4j + 2 . Each of the
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Fig. 1 Geodesic grid generation based on an icosahedron embedded in the sphere

Kj grid points is surrounded by 6 nearest neighbours except for the original 12
icosahedral vertices which have 5 nearest neighbours (see Fig. 1). The method
can be easily modified for the case when the geometry coarse grid has been
optimized.

Let S be a triangulation of the sphere S and denote the set of all vertices obtained
after j subdivisions by Sj = {pj

k ∈ S|k ∈ Kj }, where Kj is an index set,

and let q
j
k be the centre of the triangle with vertices (p

j
i , p

j
k , p

j

k+1) (see Fig. 2).
The original icosahedron S0 contains only 12 vertices (see Fig. 1 (a)) and S1 con-
tains those vertices plus all new vertices on the edge midpoints (see Fig. 1 (b)).
Since Sj ⊂ Sj+1 we also let Kj ⊂ Kj+1. Let Mj = Kj+1 \ Kj be the
indices of the vertices added when prolonging the grid from level j to j + 1
(see Fig. 1).

A second generation multi-resolution analysis (MRA) [11] of the sphere provides
a sequence of approximation subspaces Vj ⊂ L2(S) with j � 0 on the sphere
S = {p = (px, py, pz) ∈ R

3 : ||p|| = a}, where a is the radius of the sphere.

• Vj ⊂ Vj+1,
• ⋃

j≥0 Vj is dense in L2(S),

• Each Vj has a Riesz basis of scaling functions {φj
k |k ∈ Kj }.

Since φ
j
k ∈ Vj ⊂ Vj+1, for every scaling function φ

j
k filter coefficients {hj

k,l} exist
such that

φ
j
k =

∑

l∈Kj+1

h
j
k,lφ

j+1
l . (4)

Thus, instead of basing the multiresolution analysis on the scaling functions φ
j
k it

could also be based on the filter coefficients {hj
k,l}, as long as the set of coefficients

admits a solution to Eq. 4 (for details see [12, 26]). Note that the filter coefficients
{hj

k,l} will in general be different for every k ∈ Kj at a given level j � 0 due to
the non-uniform geometry of the grid generated by subdivision of the icosahedron.
Therefore, each scaling function satisfies a different refinement relation (unlike first
generation wavelets, there is no unique mother wavelet). Each MRA is accompanied
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Fig. 2 Schematic figure of angles αi,k, βi,k , neighboring vertices and area AS

by a dual MRA consisting of nested spaces Ṽj spanned by the dual scaling functions
φ̃

j
k , which are biorthogonal to the (primal) scaling functions φ

j
k ,

〈φj
k , φ̃

j

ḱ
〉 = δ

k,ḱ
, for k, ḱ ∈ Kj ,

where 〈f, g〉 = ∫ ∫
s
fg dw is the inner product on the sphere. The dual scaling

functions satisfy refinement relations with coefficients {h̃j
k,l}.

Wavelet coefficients encode the difference between two successive levels of rep-
resentation. More precisely, the wavelets form a Riesz basis for the spaceWj , which
is the complement of Vj in Vj+1 (i.e. Vj+1 = Vj

⊕
Wj ). In our case, the wavelets

form a Riesz basis for L2(S) and allow a function to be represented by its wavelet
coefficients. Since Wj ⊂ Vj+1, we can write

ψ
j
k =

∑

l∈Kj+1

g
j
k,lφ

j+1
l ,

and the spherical wavelets ψ
j
m have d̃ vanishing moments if there exists d̃ linearly

independent polynomials Pi, 0 � i < d̃ , such that

〈ψj
m, Pi〉 = 0 ∀j � 0, m ∈ Mj ,

whereMj is the index set and the polynomials Pi are defined as the restriction to the
sphere of polynomials onR3. The main advantage of the wavelet decomposition is its
ability to provide a compressed representation of a large class of functions. For func-
tions which contain isolated small scales on a large scale background, most wavelet
coefficients are small. Discarding the small coefficients and reconstructing with the
remainder (i.e. nonlinear filtering) provides an efficient multiscale approximation of
the original function. In the following Section we derive a new multiscale wavelet
method for approximating one of the most important such operators, the gradient
operator on the sphere.
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3 Adaptive approximation of the gradient operator on a spherical geodesic
grid system

Consider a sphere of radius a whose surface is defined by the spherical coordinates
(θ, φ), where θ (−π � θ � π ) and φ (−π/2 � φ � π/2) are the longi-
tude and latitude respectively. The gradient on the surface of the sphere is given
by

∇su = i
1

a cosφ

∂u

∂θ
+ j

1

a

∂u

∂φ
,

where i and j are longitudinal and latitudinal unit vectors respectively.
As mentioned in the introduction, previously, Mehra and Kevlahan [18] approx-

imated the advection operator using the flux–divergence form, where the flux term
is calculated in the form of the flux–divergence and Jacobian operators. That form
was computationally expensive as it requires solving two elliptic equations to find
the χ and ψ from the velocity field �V see (1). Mehra and Kevlahan also found that
this flux–divergence form suffers from some numerical dispersion when used in the
linear advection equation on the sphere. Here we approximate the gradient operator
directly on an adaptive spherical geodesic grid. This technique is not based on the
flux–divergence form, and hence avoids the computationally expensive Helmholtz
decomposition into curl-free and divergence-free parts as well as the solution of
elliptic equations at each time step.

Let Sj be the region on the sphere bounded by ∂s. Now, applying the divergence
theorem ∫

Sj

∇ · �F dA =
∫

∂s

�F · n ds, (5)

where �F is any vector field on the sphere and n is the unit outer normal vector to
∂s. Now consider the special case where �F is the flux of the scalar field u, �F = u �C,
where �C is a non-zero constant vector field. Then the divergence theorem in Eq. 5
becomes

∫

Sj

∇ · (u �C) dA =
∫

∂s

u �C · n ds,

= �C ·
∫

∂s

un ds. (6)

Using the vector identity ∇ · (u �C) = (∇u) · �C + u(∇ · �C) in the left hand side of
Eq. 6, we can write

∫

Sj

∇ · (u �C) dA =
∫

Sj

[(∇u) · �C + u(∇ · �C)] dA,

= �C ·
∫

Sj

∇u dA. (7)

Comparing Eq. 6 and Eq. 7 shows that

�C ·
∫

Sj

∇u dA = �C ·
∫

∂s

un ds,
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Since �C is a non-zero constant vector we have
∫

Sj

∇u dA =
∫

∂s

un ds. (8)

Let p
j
i be a vertex of the triangulation at level j and let p

j
k , k ∈ N(i), be the set of

nearest neighbour vertices of p
j
i (see Fig. 2).

We now use the finite volume approximation of the gradient operator on the sphere
defined in [27]. This method is based on the linear approximation of u at the trian-
gle centroids q

j
k using the values of u at the triangle vertices p

j
i p

j
k p

j

k−1 and area
coordinates,

u(q
j
k ) = α u(p

j
i ) + β u(p

j

k−1) + γ u(p
j
k )

α + β + γ

where α is the area of the triangle q
j
k p

j
k p

j

k−1, β is the area of the triangle p
j
i p

j
k q

j
k

and γ is the area of the triangle p
j
i q

j
k p

j

k−1. u is then approximated at the mid-point

of the arc joining triangle centroids qk and qk+1 by linear interpolation as (u(q
j
k ) +

u(qk+1))/2 to give a second-order approximation to the line integrals along the edges
of the central hexagon in Fig. 2. The discrete approximation to the gradient operator
is then found from Eq. 8 as

∇u(p
j
i ) = 1

As(p
j
i )

∑

k∈N(i)

lk

[
u(q

j
k ) + u(q

j

k+1)

2

]

nk − u(p
j
i )

As(p
j
i )

∑

k∈N(i)

lknk, (9)

where lk is the length of the arc joining the triangle centroids qk and qk+1, nk is the
outward unit normal vector to this arc at its midpoint, and As(p

j
i ) is the area of the

one ring neighbourhood of p
j
i . The control area As(p

j
i ) can be calculated by the

formula given in [28],

As(p
j
i ) = 1

8

∑

k∈N(i)

(cotαi,k + cotβi,k) ||pj
k − p

j
i ||2,

where αi,k and βi,k are the angles shown in Fig. 2 and N(i) is the set of nearest
neighbour vertices of vertex p

j
i .

The second term on the right hand side of Eq. 9 is a local curvature correction that
ensures the gradient of a constant function on the sphere is exactly zero. As noted in
[25], however, this correction term is negligible in practice, especially for grids with
six or more levels of dyadic refinement. Thus, we will neglect the correction term in
the our approximation.

The expression for gradient Eq. 9 can be written compactly in a vector form as

∇su = (G1u, G2u),

whereG1u andG2u are respectively the longitudinal (first component) and latitudinal
components (second component) of the gradient operator.
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A function u(p) ∈ L2(S) can therefore be represented in terms of its wavelet
coefficients as

u(p) =
∑

k∈K0

c0kφ
0
k (p) +

∞∑

j=0

∑

m∈Mj

d
j
mψ

j
m(p). (10)

This equation can be written as the sum of two terms composed of wavelets whose
amplitudes are respectively above and below some prescribed threshold ε, i.e.,

u(p) = u≥(p) + u<(p), (11)

where u≥(p) =
∑

k∈K0

c
J0
k φ

J0
k (p) +

∞∑

j=J0

∑

m ∈ Mj

|dj
m| ≥ ε

d
j
mψ

j
m(p), (12)

u<(p) =
∞∑

j=J0

∑

m ∈ Mj

|dj
m| < ε

d
j
mψ

j
m(p), (13)

where J0 is the coarse level of approximation. Donoho [29] has shown that for smooth
enough u,

‖u − u≥‖∞ ≤ c1ε. (14)

The number of significant coefficients N(ε) = N depends on ε,

N(ε) ≤ c2ε
−n/d, (15)

where d is the order of interpolation, n is the dimension of the problem and the
coefficients c1 and c2 depend on u(p). Combining relations (14) and (15) gives the
following error bound in terms of N(ε)

‖u − u≥‖∞ ≤ c3N(ε)−d/n. (16)

Note that d controls the number of zero moments of the interpolating scaling func-
tion. This error estimate has been verified numerically for flat geometry [12, 30] and
on the sphere [18] .

The estimates Eqs. 14–16 allow us to control both the error of the approximation
and the number of wavelet coefficients (i.e. grid points) using only the threshold
parameter ε. In the present case we use butterfly interpolation [26, 31], which should
give fourth-order convergence d = 4 provided the grid is sufficiently uniform (i.e.
for a moderate number of refinement levels). For very large numbers of the levels the
convergence rate of the butterfly interpolation drops to second-order accuracy, d = 2,
as the bisection refinement leads to a distorted grid near the edges and vertices of the
original icosahedron.

Assume that we differentiate locally at a point p
j
k ∈ Sj and that hj character-

izes the local grid spacing in all directions at that point. Then, by construction, the
local truncation error of the interpolation scheme is (hj )d = O(ε). Then approxima-
tion of gradient operator will reduce the order of the scheme by one to (hj )d−1 =
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O(εd−1/d). The convergence rate of the discrete approximation to the gradient oper-
ator Gu≥ on the adapted spherical grid to the discrete approximation of the gradient
operator on the full spherical grid Gu is therefore

||Gu − Gu≥||∞ ≤ c5ε
1−1/d ≤ c6N(ε)−(d−1)/2. (17)

Note that this convergence rate measures the error due to the wavelet filtering on
the adaptive grid when the grid is adapted by filtering the function u rather than ∇u

(hence the fact that the error is no longer proportional to ε). As mentioned above, we
use butterfly interpolation and so we expect that ||Gu − Gu≥||∞ ∼ ε3/4 ∼ N(ε)3/2

for sufficiently uniform grids, and ||Gu −Gu≥||∞ ∼ ε1/2 ∼ N(ε)1/2 for non-uniform
grids (i.e. when using a very large number of refinement levels). Recall that the dis-
crete approximation of the continuous gradient operator on the sphere is itself only
first-order accurate (i.e. exact for constant functions).

In order to realize the benefits of the wavelet compression, we need to be able to
reconstruct G1u≥(p) from the subset of N grid points (recall Eq. 10 and Eq. 11).
Again, we recall that the wavelet coefficients measure the local differences between
approximations of a function at two successive levels of resolution j and j +1. Thus,
if there are no points in the immediate vicinity of a grid point p

j
i (i.e. dj

k ≤ ε for all

k ∈ N(i), and the points p
j
i , k ∈ N(i), are not present in Sj+1) then there exists

some neighbourhood 

j
i of p

j
i , where the function can be interpolated by a wavelet

interpolant based on coefficients s
j
k,m(k ∈ Km) to accuracy O(ε),

∣
∣
∣
∣
∣
∣
u(p) −

∑

k∈K(i)

s
j
k,mφ

j
k (p)

∣
∣
∣
∣
∣
∣
≤ c3ε,

where the coefficients s
j
k,m can be chosen according as in [18]. After the wavelet

decomposition each grid point on the finest level of resolution J is uniquely associ-
ated either with a wavelet or with a scaling function at the coarsest level of resolution.
Consequently, the collocation point should be omitted from the computational grid
if the associated wavelet is omitted from the approximation. For the stability of the
reconstruction we must retain all grid points associated with the scaling function at
the coarsest level of resolution. This procedure results in a set of nested adaptive
computational grids Sj

≥ ⊂ Sj , such that Sj
≥ ⊂ Sj+1

≥ , for any j < J − 1. Performing
the wavelet transform on that adaptive grid guarantees that all wavelet coefficients
are exactly the same as those obtained from the wavelet transform of G1u≥(p) on the
complete grid and then setting to zero those wavelet coefficients that do not belong
to the adaptive grid. This is the perfect reconstruction criterion. The procedure for
adding additional grid points to an adaptive grid, so that the resulting grid satisfies the
perfect reconstruction criterion, is called the perfect reconstruction check (for details
reconstruction one can see for one and two-dimension in [12, 30] and for sphere
in [18]). The grid adaptation algorithm for the first component of gradient operator
is described in Algorithm 1. The application of this algorithm is illustrated in the
following test cases.
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4 Results

We verify the multilevel adaptive wavelet approximation of the gradient operator on a
spherical geodesic grid by applying it to four complementary test cases. The first test
case uses the test function introduced in [21] to verify the error estimate (17) for the
second component of the gradient operator. The second test case we uses a Gaussian
function on the sphere, and in third test case we apply our method to calculate the
gradient of real turbulence data on the sphere. In these two test cases we compute
both components of the gradient operator. Finally, the multilevel approximation of
gradient operator is applied to the solution of the spherical advection equations in test
case 4. Numerical errors are estimated by using L∞ and L2 norms computed using
the following formulas,

||u||∞ = max
k∈Kj

(|u(p
j
k )|),

||u||2 =
⎡

⎣ 1
∑

k∈Kj As(p
j
k )

∑

k∈Kj

As(u(p
j
k ))2

⎤

⎦

1/2

.

4.1 Test case 1

Consider the function introduced by Heikes and Randall [21],

u(θ, φ) = cos(θ) cos4(φ). (18)

We compute the second component of the gradient operator for the test function
(18) and plot ε and N(ε) compared to the theoretical prediction N(ε) ∼ ε1/2

for fourth-order butterfly interpolation derived in Section 3 in Fig. 3. The relation
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Fig. 3 Scaling of number of active grid points N(ε) with tolerance ε for the second component of the
gradient operator for test case 1. The results are compared with the theoretical scaling ε−1/2

between ||G2u − G2u≥ ||∞ and N(ε) is plotted in Fig. 4 (left), and the relation between
||G2u − G2u≥ ||2 and N(ε) is plotted in Fig. 4 (right). One observes that l∞ error is
of order O(N(ε)−3/2) (consistent with fourth-order accurate wavelet interpolation).
Again, the relation of ||G2u − G2u≥ ||∞ and ||G2u − G2u≥ ||2 are plotted as a function
of ε in Fig. 5.

Hence, the approximation of the second component of the gradient operator is
indeed controlled by the tolerance ε. The second component of the gradient opera-
tor is shown in Fig. 6 (left) and the associated adaptive computational grid G2u≥ is
shown in Fig. 6 (right). The adapted grid is fine only in regions where the function
has a strong gradient. Therefore, the adaptive grid clearly reflects the structure of the
function. The first component gives similar results.
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Fig. 4 Scaling of the error in the second component of the gradient operator with number of active grid
points N(ε) in the L∞ (left) and L2 (right) norms for test case 1 compared with the theoretical scaling
ε−3/2
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Fig. 5 Control of error for the second component of the gradient operator in the L∞ (left) and L2 (right)
norms for test case 1 compared with the theoretical scaling ε3/4

In order to demonstrate the efficiency of the multilevel approximation of gradi-
ent operator on an adaptive spherical geodesic grid we need to compare the number
of grid points used in the adaptive case and the nonadaptive case. This can be
measured by the compression coefficient C = N (ε=0)

N (ε �=0) . As expected, Fig. 7 (left)
shows that the compression coefficient C increases when the wavelet prescribed
threshold parameter (ε) increases. In the limit ε → 0 the compression coeffi-
cient tends to one and the computational grid converges to a uniform (regular)
grid.

Finally, we check that the maximum jmax = 7 levels used in the tests
are indeed sufficient to fully resolve the test function for the range of toler-
ances ε considered here. This is confirmed in Fig. 7 (right), which shows that
the number of active points does not increase as when we allow more than
jmax = 7.

Fig. 6 Second component of gradient operator of test case 1 (left) and its adaptive grid (right)
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Fig. 7 Relation between compression coefficient (C) and ε of second component gradient operator of test
case 1 (left). N(ε) as a function of number of allowed levels j (right)

4.2 Test case 2

The second test case is the localized Gaussian function on the sphere

u(θ, φ) = 2 exp

[

− (θ − θ0)
2 + (φ − φ0)

2

L2

]

, (19)

where θ0 = 0 and φ0 = 0 and L = 1/2π . This time we show results for both first
and second component of the gradient operator. The relation between ε and N(ε)

is plotted in Fig. 8. The scalings of errors ||G1u − G1u≥ ||∞ and ||G1u − G1u≥ ||2 are
plotted in Figs. 9 and 10 as a function of N(ε) and ε respectively. Once again, the
approximation of the gradient operator is well-controlled by the tolerance parameter
ε.
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gradient operator for test case 2
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Fig. 9 Scaling of the error in the first component of the gradient operator with number of active grid points
N(ε) in the L∞ (left) and L2 (right) norms for test case 2 compared with the theoretical scaling ε−3/2

Figures 11 and 12 show the two components (first and second respectively) of
gradient operator for test case 2 together with the associated adaptive computational
grids ε = 10−3. As in the previous test case, the adaptive grid is fine only in regions
where the function has a strong gradient.

To get a better idea of how the adaptive grid tracks regions of sharp transition, we
have plotted the relation between level the j and the number of active grid points
N(ε) in Fig. 13. This figure shows that we need only up to level j = 7 because for
j > 7 there is no change in the number of active points for the range of tolerances ε

considered here. In this case the compression coefficient C ≈ 22 for ε = 10−2.

4.3 Test case 3

For the third test case we consider real turbulence data on the sphere, the real tur-
bulence field is generated by the integration of the two-dimensional Navier-Stokes
equations on the sphere without rotation after 12 hour with random seed initial con-
dition. The field organized structures are well localized and spread on a wide range
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Fig. 10 Control of error for the first component of the gradient operator in the L∞ (left) and L2 (right)
norms for test case 2 compared with the theoretical scaling ε3/4
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Fig. 11 First component of the gradient operator (left) and the corresponding adaptive grid (right) for test
case 2 with tolerance ε = 10−3

of scales. Hence this will be a good test case for approximation of both component
of gradient operator on the sphere.

We show results for both components of the gradient operator of turbulence data
on a sphere. The turbulence data on the sphere is shown in Fig. 14. The first com-
ponent of gradient operator is shown in Fig. 15 (left) and the associated adaptive
computational grid G1u≥ is shown in Fig. 15 (right). The second component of gradi-
ent operator is shown in Fig. 16 (left) and the associated adaptive computational grid
G2u≥ is shown in Fig. 16 (right). In the present calculation jmax = 7 for both the tur-
bulence data and the wavelet transform. The relation between ε and N(ε) is plotted
in Fig. 17, for both components of gradient operator. The scaling relations between
ε and the error of the first and second components of the gradient operator are plot-
ted in Fig. 18 and Fig. 19 respectively. The results indicate that in this statistically

Fig. 12 Second component of the gradient operator (left) and the corresponding adaptive grid (right) for
test case 2 with tolerance ε = 10−3
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Fig. 13 Relation between the level of resolution j and number of active grid points N(ε) for the first
component of the gradient operator for test case 2

homogeneous, but strongly multiscale case, as in the previous cases, the approxima-
tion error of the gradient operator is well-controlled by ε.

4.4 Test case 4 (Spherical advection equation)

We discussed multilevel approximation of the gradient operator in Section 3. Now
we consider dynamic grid adaptation for the solution of linear advection problem, i.e.
we incorporate our gradient scheme in a time-dependent PDE solver.

Fig. 14 Real turbulence data
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Fig. 15 First component of gradient operator (left) and the corresponding adaptive grid (right) for the
turbulence data shown in Fig. 14. Note the presence of benign well-known grid-scale checkerboard
oscillations in the visualization of the gradient due to the use of the C-grid [32]

Advection processes are of paramount importance in atmospheric numerical mod-
eling. Since the fluid motions on all scales are dominated by the advection process
the accurate and efficient numerical solution of the advection problem determines
the overall accuracy of the ocean or atmosphere simulation. One of the main goals
of this paper to apply our adaptive method for the gradient operator to standard geo-
physical test cases for the transport problem on the sphere [4, 33, 34]. We consider
two standard geophysical test cases for linear advection driven by time-independent
and time-dependent winds respectively.

When solving the time-dependent PDEs an additional criterion for grid adaptation
should be added. The computational grid should consist of grid points associated
with those wavelets whose coefficients are currently significant, or could become
significant during a time step. In other words, at any instant in time, the computational
grid should consist of the N(ε) significant grid points plus those grid points in an
adjacent zone [18] in both position and scale that could becomes significant in one

Fig. 16 Second component of gradient operator (left) and the corresponding adaptive grid (right) for the
turbulence data shown in Fig. 14
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time step. This allows for the appearance of details on finer scales, such as shocks
and localized gradients. With the addition of an adjacent zone, we have a dynamically
adaptive method for time-dependent PDEs on the sphere, defined by the method of
lines as a system of ordinary differential equations in time. The three basic steps are
as follows:

1. Knowing the solution u≥(t) on the adaptive grid, we compute the values of
wavelet coefficients corresponding to each component of the solution using the
fast wavelet transform. For a given threshold ε. we update S t+�t≥ based on the
magnitude of wavelet coefficients. We also add an adjacent zone [18] to the
significant coefficients to allow for the change in the solution during one time
step.

2. If there is no change between computational grids S t≥ and S t+�t≥ , we go directly
to the next step. Otherwise, we interpolate the values of the solution at the
collocation points S t+�t≥ , which are not included in S t≥.
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Fig. 18 Relation between ||G1u − G1u≥ ||∞ and ε (left), and relation between ||G1u − G1u≥ ||2 and ε (right)
for the first component of turbulence data
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Fig. 19 Relation between ||G2u − G2u≥ ||∞ and ε (left), and relation between ||G2u − G2u≥ ||2 and ε (right)
for the second component of turbulence data

3. We integrate the resulting system of ordinary differential equations in time (e.g.
using Runge–Kutta) to obtain new values to u≥(t + �t) at positions on adaptive
grid S t+�t≥ , and go back to step 1.

The time integration step 3 of the above algorithm requires finite approximations of
the differential operators in space that define the right hand side of the system of
ordinary differential equations in time.

4.4.1 Advection of cosine bell with time-independent wind fields

In this case a cosine bell is advected once around the sphere, which is a standard
test case for any numerical scheme considered for climate or weather modelling. The
case was suggested by Williamson [33] to simulate the advection of a height field,
u(θ, φ) on the surface of a sphere at an angle α which is the angle between the
axis of solid-body rotation and the coordinate axis of spherical coordinate system.
Using adaptive wavelet collocation method [18], the partial differential equation to
be solved is the spherical advection equation, which in spherical coordinates is given
by

∂u

∂t
+ v.∇u = 0, (20)

where t ∈ [0, T ] is the time and T is the ending time of the simulation, and the
advecting wind field are given by v = (v1, v2)

v1 = u0

[
cos(φ) cos(α) + sin(φ) cos

(
θ + 3π

2

)
sin(α)

]
,

v2 = u0 sin
(
θ + 3π

2

)
sin(α),

(21)

where u0 the advection speed, here we set u0 so that the rotation period is equal to
one. Further, Eq. 20 can be written as

∂u

∂t
= v1G

1u + v2G
2u.
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The initial cosine bell test pattern that to be advected is given by,

u(θ, φ) =
{

1
2 [1 + cos(πr/R)] if r < R,

0 if r ≥ R,

where R = a/3 and r = a arccos[sin(φc) sin(φ) + cos(φc) cos(φ) cos(θ − θc)],
which is the geodesic distance between (φ, θ) and the center (φc, θc) = (0, 0). We
integrate Eq. 20 in time using the fourth-order Runge–Kutta method with time step
�t = 10−4. The initial conditions are chosen such that α = π

2 − 0.05 (this is the
most unfavourable case for latitude longitude grids). The exact solution of the advec-
tion equation at any time step is simply a translation of the initial condition, since
the solid-body rotation moves the cosine bell around the globe without any shape
deformation.

The initial cosine bell is plotted in Fig. 20 (left) and its associated adaptive grid
is plotted Fig. 20 (right). Note that this is also the exact solution after one orbit on
the non-rotating sphere. The solution of the advection equation after one complete
orbit around the non-rotating sphere is shown in Fig. 21 (left) and its associated
adaptive grid is shown in Fig. 21 (right). Comparing this to the exact solution (the
initial condition) in Fig. 20, shows no sign of any trailing dispersive wave trains,
i.e., the pattern is simply advected without changing shape as in the exact solution.
The dependence of the error on the tolerance ε and on the number of active N(ε)

is shown in Fig. 22 which confirms that the error is controlled by ε. The l∞ error
as a function of time is shown in Fig. 23. Note that in our previous approach using
the Helmholtz decomposition for the flux–diffusion equation [18], some numerical
dispersion was evident after one revolution in both the solution and computa-
tional grid. Thus, the present approximation represents a significant improvement
both in qualitative accuracy and reduced computational cost over the previous
method.

Fig. 20 Cosine bell initial conditions and exact solution after one orbit on a non-rotating sphere (left) and
its associated adaptive grid (right)
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Fig. 21 Numerical solution of the advection of cosine bell test case after one orbit on a non-rotating
sphere (left) and its associated adaptive grid (right)

4.4.2 Advection of cosine bells with time-dependent wind fields

We now consider the advection of two symmetric cosine bells for the time-dependent
wind test case proposed in [4]. The spatial and temporal structure of the velocity
vector V(θ, φ, t) = (v1(θ, φ, t), v2(θ, φ, t)) is

v1 = 2 sin2 (θ) sin (2φ) cos(πt/T ),

v2 = 2 sin(2θ) cos(φ) cos(πt/T ). (22)

The symmetric cosine bell initial condition u(θ, φ) is

u(θ, φ) =
⎧
⎨

⎩

b + cu1(θ, φ) if r1 < R,

b + cu2(θ, φ) if r2 < R,

b otherwise,

(23)
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Fig. 22 Error convergence as a function of tolerance ε (left) and as a function of number of active grid
points N(ε) (right) for the solution of advection of cosine bell
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Fig. 23 Point wise (L∞) error of the advected cosine bell solution as a function of time

where the background value b = 0 and amplitute c = 1, such that u ∈ [0, 1]. The
initial position of the distribution ui = u(θi, φi, t) with i = 1, 2, is

ui(θ, φ) = hmax

2
[1 + cos(πri/R)] if ri < R. (24)

where the amplitude hmax = 1, base radius R = a/3, and great circle distance
between (θ, φ) and the center (θi, φi) is ri = ri(θ, φ) = a arccos[sin(φi) sin(φ) +
cos(φi) cos(φ) cos(θ − θi)], where (θ1, φ1) = (π/6, 0) and (θ2, φ2) = (−π/6, 0).
The initial condition is plotted in Fig. 24 (left) and its associated adaptive grid is
plotted Fig. 24 (right).

Fig. 24 Cosine bells initial conditions and exact solution after time T = 5 on a non-rotating sphere (left)
and its associated adaptive grid (right)
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Fig. 25 Numerical solution of the advection of cosine bells at time t = 2.5 (left) and its associated
adaptive grid (right)

The advection Eq. 20 is integrated with time-dependent velocity vector (22) and
initial profile (23) in time using the fourth-order Runge–Kutta method with time step
�t = 10−4. The exact solution of this test case at time T = 5 is identical to the ini-
tial condition although, unlike the previous time-independent wind case, the solution
is different at intermediate times. As time increases the cosine bells are increasingly
deformed into spiral shapes until at time t = T/2 the field is maximally deformed
and has split into four pieces as shown in Fig. 25. The solution should return exactly
to the initial double cosine bell state at t = 5. Comparing Fig. 24 to the numerical
solution at t = 5 shown in Fig. 26 shows the good qualitative accuracy of the dynam-
ically adaptive wavelet method for this challenging transport test. More qualitatively,
we also show contour plots of the solution at three times in Fig. 27. As in the simpler

Fig. 26 Numerical solution of the advection of cosine bells at time t = 5 when cosine bells return back
to the initial position (left) and its associated adaptive grid (right)
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Fig. 27 Contour plots of cosine bells initial conditions and exact solution after time t = 5 on a non-
rotating sphere (left), numerical solution of the advection of cosine bells at time t = 2.5 (middle), and
numerical solution of the advection of cosine bells at time t = 5 when cosine bells return back to the
initial position (right)

time-independent case, there is no sign significant numerical dispersion of the solu-
tion or grid. The only difference is that the grid for the solution at t = 5 is slightly
larger than than of the initial condition, although the numerical solutions is essentially
identical.

The accuracy is measured using l∞ error, which is computed at the end of
the simulation t = T when the exact solution is known (i.e., it equals the
initial condition). Numerical convergence is verified by progressively decreas-
ing the threshold parameter ε. We the dependence of the error on the tol-
erance ε and on the number of active grid points N(ε) Fig. 28. These
results confirm convergence and that the errors are indeed controlled by ε and
N(ε).

These results show that our dynamically adaptive gradient approximation
method is both qualitatively and quantitatively accurate, and is able to track the
reversible deformation generated by the time-dependent advecting velocity field.
It is thus well-suited to ocean and atmosphere simulation where accurate and
efficient non-dispersive and non-diffusive computation of transport problems is
essential.
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Fig. 28 Error convergence as a function of tolerance ε (left) and number of active grid points N(ε) (right)
for the solution of advection of cosine bells
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5 Summary and future work

This paper introduces a new wavelet-based multilevel approximation of gradient and
advection operators on an adaptive spherical geodesic grid. This new method, unlike
our previous flux–divergence form [18], does not require computing the Helmholtz–
Hodge decomposition and appears not to suffer from numerical dispersion in either
the solution or dynamically adapted computational grid. Since computation of gradi-
ent operators is necessary for many applications in data analysis and in the numerical
simulation of PDEs on the sphere, this efficient and accurate new technique should
be practically useful.

The theoretical properties of the scheme are verified by applying it to the localized
test function proposed by Heikes & Randall [21], a Gaussian function on the sphere,
and a real turbulence data. Finally, the gradient operator approximation is imple-
mented in a dynamically adaptive linear advection solver. This solver is then applied
to a standard geophysical test case for time-independent [33] transport and a more
recent and more challenging test case for deformational time-dependent transport on
the sphere [4].

Our approach is based on second-generation wavelets which means it can be cus-
tom designed for general curved complex domains and irregular sampling. The high
resolution computations are performed only in regions where sharp transitions occur.
Thus, the strength of this method is that it can be generally applied in atmospheric
and geophysical simulation problems (e.g. on the geoid rather than a perfect sphere),
computational fluid dynamics and turbulence flow while retaining the freedom and
flexibility to select the wavelet basis best-suited to the specific application.
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