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In this paper, we present the multilevel adaptive wavelet collocation method for solving
non-divergent barotropic vorticity equation over spherical geodesic grid. This method is
based on multi-dimensional second generation wavelet over a spherical geodesic grid.
The method is more useful in capturing, identifying, and analyzing local structure [1] than
any other traditional methods (i.e. finite difference, spectral method), because those meth-
ods are either full or partial miss important phenomena such as trends, breakdown points,
discontinuities in higher derivatives of the solution. Wavelet decomposition is used for
interpolation and adaptive grid refinement on different levels.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The barotropic vorticity equation model is an important equation in the research of the atmospheric sciences which de-
scribes the evolution of the vorticity of a fluid element as it moves around. It is a simplification of conservation law of
momentum for inviscid and incompressible fluid. For the theoretical investigations of the evolution of vortices, atmospheric
researchers are using the barotropic assumption, as there is no vertical component, i.e., single-layered fluid. Moreover, baro-
tropic model is useful for modeling the movement of tropical cyclones [2–4] and the interaction of two vortices in close prox-
imity to one another [5]. The barotropic assumption has also been used to model global wave patterns in the middle
troposphere [6,7]. But sometime to find analytic solutions of these type of problems are either not known or very difficult
to develop. Therefore, many scientists pay attention to the research of numerical methods of the equation [8–10].

Since atmospheric blockings are approximately stationary and relatively long-lived phenomena, so that one might at-
tempt to describe them in term of stationary solution of barotropic vorticity equation [11,12]. However the baropropic vor-
ticity equation on a sphere has known several stationary or longitudinally propagating solution, such as exact solution of
Rossby–Hauritz wave [13] and modons [14,15]. Examples of numerical solution obtained for Rossby–Hauritz wave [16]
and modons [17,14]. This solution of modon and Rossby–Hauritz is to be presented here with less computational cost
and clearly indicating the region of sharp gradient.

The theory and application of wavelets has become an active area of research in different fields, including electrical engi-
neering (signal processing, data compression), mathematical analysis (harmonic analysis, operator theory), and physics
(fractals, quantum field theory). Moreover, it also applied to seismic signal studies in geophysics; and applications in turbu-
lence studies in the atmospheric sciences. Basically application of signal analysis in atmosphere sciences has two main direc-
tions as followed: the singularity and the variance analysis.
. All rights reserved.
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The current wavelet method can be classified in different ways depending on the above applications whether it take full
or partial advantage of wavelet analysis (i.e. multiresolution properties, wavelet compression, the detection of localized
structures and subsequent use for grid adaptation, fast wavelet transform, wavelet-based interpolation, and active error con-
trol) [18]. But still now it’s application for solving partial differential equations (PDEs) on general manifold is in infancy stage.
A new adaptive second generation wavelet collocation method for solving PDEs on sphere has recently been developed in
[19]. The adaptive wavelet collocation method is most appropriate for solving nonlinear PDEs with general boundary con-
ditions. This approach combines the adaptivity and error control of the adaptive wavelet method with the flexibility of col-
location. It has been verified by many authors in [20,21,1,22,23] over the flat geometry and [19,24] on sphere. Therefore, the
aim of this paper is to apply multilevel adaptive wavelet collocation method (MAWCM) for solving useful barotropic vortic-
ity equation on the sphere. Since wavelets are localized in both space and scale, we can clearly analyze local structure of any
kind. Furthermore the computational cost of the MAWCM is OðN Þ which is independent of the dimension of the problem,
where N is the total number of collocation points.

The paper is organized as follows, the brief introduction about second generation wavelet is given in Section 2. In Sec-
tion 3, we are discussing MAWCM to solve PDEs on the sphere. Moreover in section 4 we describe clearly how operators
(Jacobian operator and Laplace–Beltrami operator) are calculated on an adaptive grid. In Section 5, the numerical experiment
of two test cases are given. The conclusion is outlined in Section 6.

2. Spherical wavelets

Some of the first non-trivial wavelets that have been developed are the Daubechies wavelet [25], Coiflets [25,26], Meyer
wavelet [27] and Morlet wavelet [25,28]. These, and most other wavelets developed in the 1980s, are first generation wave-
lets whose construction requires the Fourier transform and whose basis functions have to be dilation and translation of sin-
gle function (mother wavelet). However, these wavelets were limited to flat geometries. The work by Swelden [29] overcome
these restrictions and led to the second generation wavelets on general manifold.

The construction of spherical wavelet (second generation wavelet) in [30] relies on recursive partitioning of the sphere
into spherical triangles. This is done staring from a platonic solid whose faces are spherical triangles. Here we consider
the icosahedral subdivision for which Kj ¼ 10� 4j þ 2 at subdivision level j. Let S be a triangulation of the sphere S and de-
note the set of all vertices obtained after subdivisions with Sj ¼ fpj

k 2 Sjk 2 Kjg, where Kj is an index set. Now the original
platonic solid icosahedral S0 contains only 12 vertices and the S1 contains those vertices and all new vertices on the edge
midpoints. Since Sj � Sjþ1 we also let Kj � Kjþ1. LetMj ¼ Kjþ1=Kj be the indices of the vertices added when going from level
j to jþ 1.

A second generation multi resolution analysis (MRA) [29] of the sphere provides a sequence V j � L2ðSÞwith j P 0; and the
sphere S ¼ fp ¼ ðpx; py; pzÞ 2 R3 : kpk ¼ rg, where r is the radius of the sphere:

� V j � V jþ1,
�
S

jP0V j is dense in L2ðSÞ,
� each V j has a Riesz basis of scaling functions f/j

kjk 2 K
jg.

Since /j
k 2 V

j � V jþ1, for every scaling function /j
k filter coefficients hj

k;l exists such that
/j
k ¼

X
l2Kjþ1

hj
k;l/

jþ1
l : ð1Þ
Note that the filter coefficients hj
k;l can be different for every k 2 Kj at a given level j P 0. Therefore each scaling function

satisfies a different refinement relation. Each MRA is accompanied by a dual MRA consisting of nested spaces ~V j with bases
by the dual scaling functions ~/j

k, which are biorthogonal to the scaling functions:
h/j
k;

~/j
�k
i ¼ dk;�k; for k; �k 2 Kj; ð2Þ
where hf ; gi ¼
RR

sfgdw is the inner product on the sphere. The dual scaling functions satisfy refinement relations with coef-
ficients f~hj

k;lg. The surface plot of scaling function and it’s cross cut along maximum and minimum are plotted in Fig. 1.
One most important thing when you are going to build MRA to construction of wavelets. They encode the difference be-

tween two successive levels of representation, that is there from Riesz basis for the space W, which is complement of V j in
V jþ1 (i.e. V jþ1 ¼ V j �W j). The construction of the wavelets form a Riesz basis for L2ðSÞ and allow a function to be represented
by its wavelet coefficients. Since W j � V jþ1, we can write
wj
k ¼

X
l2Kjþ1

gj
k;l/

jþ1
l ; ð3Þ
and the spherical wavelets wj
m have ~d vanishing moments, if ~d is the independent polynomials Pi; 0 6 i 6 ~d exist such that
hwj
m; Pii ¼ 0 8j P 0; m 2 Mj; ð4Þ



Fig. 2. Wavelets at different levels (j).

Fig. 1. (a) Scaling function; (b) cross cut of scaling function along the maximum and minimum.
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where Mj is the index set and polynomial Pi are define as the restriction to the sphere of polynomials on R3. We also plot
wavelets at different scales in Fig. 2 and cross cut of wavelets along the maximum in Fig. 3. One thing to observe from Fig. 3
that wavelets are more localized with increasing j.

3. Multilevel adaptive wavelet collocation method

The main advantage of wavelet decomposition is it’s ability to compress the function. For functions which contain iso-
lated small scales on a large scale background, most wavelet coefficients will be small and by discarding a large number
of these small coefficients, we can efficiently approximate the function.

Consider a function uðpÞ 2 L2ðSÞ which can be approximated as
uðpÞ ¼
X
k2K0

c0
k/

0
kðpÞ þ

X1
j¼0

X
m2Mj

dj
mwj

mðpÞ: ð5Þ
This equation can be written as sum of two terms composed of wavelets whose amplitudes are, above and below some pre-
scribed threshold � that is
uðpÞ ¼ uPðpÞ þ u<ðpÞ; ð6Þ

where uPðpÞ ¼
X
k2K0

cJ0
k /J0

k ðpÞ þ
X1
j¼J0

X
m2Mj

jdj
m jP�

dj
mwj

mðpÞ; ð7Þ
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u<ðpÞ ¼
X1
j¼J0

X
m2Mj

jdj
m j<�

dj
mwj

mðpÞ; ð8Þ
where J0 is the coarse level of approximation, Donoho [31] has shown that for smooth enough u,
kuðpÞ � uPðpÞk1 6 c1�; ð9Þ
and the number of significant coefficients Nð�Þ ¼ N depends on �,
Nð�Þ 6 c2��n=d; ð10Þ
where d is the order of interpolation, n is the dimension of the problem and the coefficients ci’s depend on the function. Com-
bining relations (9) and (10) gives the following bound on the error in terms of Nð�Þ
kuðpÞ � uPðpÞk1 6 c3Nð�Þ�d=n
: ð11Þ
Note that d controls the number of zero moments of the interpolating scaling function. This error estimate is consistent with
numerical experiment for flat geometry (Vasilyev and Bowman [21,1]), and (Mehra and Kevlahan in [19]) on the sphere.

In order to realize the benefits of the wavelet compression, we need to have the ability to reconstruct uPðpÞ from the sub-
set of Nð�Þ � N of significants grid points. Furthermore, we recall that every wavelet wj

lðxÞ is uniquely associated with a col-
location point. Hence once the wavelet decomposition is performed, each grid point is uniquely associated either with the
wavelet or scaling function at the coarsest level of resolution. Consequently, the collocation point should be omitted from the
computational grid, if the associated wavelet is omitted from the approximation. This procedure results in a set of nested
adaptive computational grids Sj

P � S
j, such that Sj

P � S
jþ1
P , for any j < J � 1, where J is the finest level of resolution present

in approximation uPðxÞ (for detail see in one dimensional and multi dimensional [21,1] and on the sphere [19]). Thus, if there
are no points in the immediate vicinity of a grid point pj

i, means jdj
kj 6 � for all k 2 NðiÞ, and the points pjþ1

k ; k 2 NðiÞ, are not
present in Sjþ1, then there exists some neighborhood Xj

i of pj
i, where the function can be interpolated by a wavelet interpolant

based on sj
k;mðk 2 KmÞ:
uðpÞ �
X

k2KðiÞ
sj

k;m/j
kðpÞ

������
������ 6 c3�; ð12Þ
where the coefficients sj
k;m can be chosen according as [19].
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When solving the evolution equations an additional criterion for grid adaptation should be added. The computational grid
should consist of grid points associated with wavelets whose coefficients are significant or could become significant during a
time step. In other words, at any instant in time, the computational grid should include points associated with wavelets
belonging to an adjacent zone of wavelets for which the magnitude of their coefficients is greater than an a priori prescribed
threshold.

4. Operators on an adaptive grid

The barotropic vorticity equation describing the time evolution of two-dimensional non-divergent incompressible and in-
viscous flow, for a rotating spherical geometry can be written as
Fig.
@f
@t
¼ �Jsðw; fþ f Þ;

f ¼ Dw:
ð13Þ
Here fðh;/; tÞ is the vorticity (relative vorticity) of the horizontal wind on the surface of the sphere. where�p 6 h 6 p and
�p=2 6 / 6 p=2 are longitude and latitude, respectively, w is the stream function, f is the Coriolis parameter, t is the time
and D is the Laplace–Beltrami operator on the sphere, which is defined as
Da ¼ 1
r2 cos2 /

@2a
@h2 þ cos /

@

@/
ðcos /

@a
@/
Þ

" #
; ð14Þ
and the Jacobian operator Js on a sphere is defined as
Jsða;bÞ ¼
1

r2cos/
@a
@h

@b
@/
� @b
@h

@a
@/

� �
; ð15Þ
where a; b are any two scalar function, r is the radius of the sphere. When we are solving barotropic vorticity equation, it is
necessary to approximate differential operators (i.e. Laplace–Beltrami (Eq. (14)) and Jacobian (Eq. (15))) at collocation points.
For spherical Poisson equation, the convergence of Laplace–Beltrami operator on an spherical geodesic grid [32] is presented
in [24]. First, we will study the convergence of Jacobian operator on an spherical geodesic grid and secondly MAWCM will be
applied on barotropic vorticity equation. In this section we describe an efficient procedure for approximating Jacobian oper-
ator and Laplace–Beltrami operator [19].

Let pj
i be a vertex of the triangulation at resolution j; and pj

k;2 NðiÞ be the neighboring vertices around pj
i . The numerical

approximation of the Laplace–Beltrami operator on the sphere S as proposed in [33] is then vortices
Du ¼ 1

Asðpj
iÞ

X
k2NðiÞ

cot ai;k þ cot bi;k

2
uðpj

kÞ � uðpj
iÞ

h i
;

where the ai;k and bi;k are the angles shown in Fig. 4, NðiÞ is the set of nearest neighbor vertices of the vertex pj
i. Asðpj

iÞ is the
area of the one-ring neighborhood given by
4. Schematic figure of angles ai;k;bi;k , neighboring vertices and area AS used in evaluating derivatives on a spherical triangulation of a surface.
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Asðpj
iÞ ¼

1
8

X
k2NðiÞ
ðcotai;k þ cot bi;kÞkpj

k � pj
ik

2
:

Furthermore, the numerical approximation of the Jacobian operator over spherical geodesic grid [34] will be
Jsðuðp
j
iÞ;vðp

j
iÞÞ ¼

1

6Asðpj
iÞ

X
k2NðiÞ
ðuðpj

iÞ þ uðpj
kÞÞðvðp

j
kþ1Þ � vðpj

k�1ÞÞ; ð16Þ
The differentiation procedure is based on the interpolating properties of second-generation wavelets. Thus this procedure
gives us the value of the Jacobian operator of the function at that particular location. The accuracy of the any function and its
differentiation procedure was examined in [21,1] for flat geometries. Furthermore, Mehra and Kevlahan [19,24] have exam-
ined how to approximate a function on the sphere, and Laplace–Beltrami on the sphere. Here, the accuracy of the wavelet
approximation of Jacobian operator is also being examined. Assume that we perform local differentiation at a point pj

k 2 S
and hj is the quality describing the local grid spacing in all directions at that point which is constant for a uniform grid, then
from construction, the local truncation error of the interpolation scheme is kJsuðpÞ � JsuPðpÞk ¼ hðd�2Þ(loss of second order
due to derivative), but kuðpÞ � uPðpÞk ¼ hd ¼ � (when one can filter any function) hence h ¼ �ð1=dÞ and
kJsuðpÞ � JsuPðpÞk 6 c1�ð1�2=dÞ
6 c2N�ðd�2Þ=2; ð17Þ
for butterfly interpolation consistent with this relation d ¼ 4
kJsuðpÞ � JsuPðpÞk 6 c1�ð1=2Þ
6 c2Nð�Þ�1

: ð18Þ
Now we have all the ingredients necessary to construct a dynamically adaptive during each time step for the solution of
barotropic vorticity equation on the sphere. The three basic steps are as follows:

1. Knowing the solution uPðtÞ on the adaptive grid, we compute the values of wavelet coefficients corresponding to each
component of the solution using the fast wavelet transform. For a given threshold �. we update StþDt

P based on the mag-
nitude of wavelet coefficients. We also add an adjacent zone [19] to the significant coefficients to allow for the change in
the solution during one time step, as described in Section 3.

2. If there is no change between computational grids St
P and StþDt

P , we go directly to next step. Otherwise we interpolate the
values of the solution at the collocation points StþDt

P , which are not included in St
P.

3. We integrate the resulting system of ordinary differential equations in time (e.g. using Runge–Kutta) to obtain new values
to uPðt þ DtÞ at positions on adaptive grid StþDt

P , and go back to step 1.

5. Numerical results

5.1. Jacobian

Hear we are presenting how to calculate Jacobian in MAWCM by using initial solution [35] of both f and w.
w ¼ �r2x sin /þ r2K cosR / sin / cos Rh; ð19Þ

f ¼ 2x sin /� K sin / cosR /ðR2 þ 3Rþ 2Þ cos Rh; ð20Þ
where x ¼ K ¼ 7:8480� 10�6s�1 and R ¼ 4 are constant. Now we take � ¼ 10�5, and r ¼ 1 and compute Jacobian
ðJsðwðp

j
iÞ; fðp

j
iÞÞÞ using formula (16). The relation between kJsuðpÞ � JsuPðpÞk1and � is plotted in Fig. 5, here one can observe

that error is of order Oð�Þ1=2 (verified against the theoretical predication (17), d ¼ 4). Conclusively, the error is controlled by �.
The Jacobian of function w and f (as mentioned in Eqs. (19) and (20)) is plotted in the left of Fig. 6 and its adaptive grid is in
right of Fig. 6. The adaptive grid in the right of Fig. 6 clearly indicating the region of sharp gradient.

To show the efficiency of MAWCM we need to compare number of grid points used in the adaptive and non adaptive
grids. This can be measured by calculating compression coefficient C ¼ Nð� ¼ 0Þ=Nð�Þ. In Fig. 6, the computed compression
coefficient C ¼ 3:14 means we are computing Jacobian on adaptive grid which is having three times less number of grid
points as compare to non adaptive (uniform) grid. Moreover from Fig. 7, one can observe that compression coefficient C in-
creases when wavelet prescribed threshold parameter ð�Þ increases, means when � goes to zero, the compression coefficient
goes to one, i.e., adaptive algorithm becomes nonadaptive and its show the uniform (regular) grid. Therefore, adaptive grid
clearly reflects the behavior of the function.

5.2. Test case-1

This test case is generally refer to Rossby–Haurwitz test case of shallow water test case [35]. For an initial vorticity equa-
tion (20), we plotted relation between � and error and compared to the theoretical prediction [19] (i.e. Oð�Þ, see in Fig. 8).
Furthermore, the initial vorticity f and its adaptive grid are plotted in Fig. 9. Moreover, compression coefficient C ¼ 77. Again
in Fig. 10, it is cleared that compression coefficient C increases when wavelet prescribed threshold parameter ð�Þ increases,
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means when � goes to zero, the compression coefficient goes to one (uniform grid). The solution and its adaptive grid using
MAWCM with Runge–Kutta time integration scheme after 10 days are plotted in Fig. 11 for � ¼ 10�5. The adaptive grid cap-
tures the solution very well, moreover it can clearly reflect the behavior of the function, which is the strength of MAWCM.

In order to evaluate the performance of the scheme we calculated the conservation errors for total mass and potential
enstrophy defined, by the following relations
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Mass ¼ h; ð21Þ

Potential Enstrophy ¼ 1
2gh
ðfþ f Þ2; ð22Þ



Fig. 11. Solution (left) and its adaptive grid (right) after 10 days.
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where gh is defined by Williamson et al. [35], the conservation error is calculated using the following equation
M¼ Iðf ðh;/; tÞÞ � Iðf ðh;/; t ¼ 0ÞÞ
Iðf ðh;/; t ¼ 0ÞÞ ; ð23Þ
where I denotes the integral over the sphere and f ðh;/; tÞ can be total mass or potential enstrophy. In particular, the solution
of non-divergent barotropic vorticity equation is in this form of traveling around the earth from west to east with constant
angular velocity and the initial structure is well maintained with only minimal vacillations in shape. Moreover, the conser-
vation errors of mass and potential enstrophy are presented in Fig. 12 (left) and (right), respectively. It is shown that the
mass is fully conserved consistently and the errors for the potential enstrophy are of the same order see Fig. 12 (right).

5.3. Test case-2

In this section we consider a test case (Dipole Modon test by Verkley [14]) which solution is more localization of baro-
tropic vorticity equation. The solution can be written as
wðh;/; tÞ ¼ Xðh0;/0Þ �x0 sinð/Þ þ D0; ð24Þ
here x0 is angular velocity of solid-body rotation in outer region of the modon, D0 is the constant. Moreover ðh0;/0Þ is a ro-
tated coordinate system, which has the north pole at ðha;/aÞ with respect to the unrotated ðh0;/0Þ coordinate system (see
[14])
Xðh0;/0Þ ¼ Xdð/0Þ cosðh0Þ þ Xmð/0Þ; ð25Þ
where Xdð/0Þ and Xmð/0Þ are given by
Xdð/0Þ ¼ ðx0 � C0Þ cosð/aÞ cosð/0ÞFdð/0Þ; ð26Þ
Xmð/0Þ ¼ ðx0 � C0Þ cosð/aÞ sinð/0ÞFmð/0Þ; ð27Þ
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Fig. 12. Conservation of mass and enstrophy of Rossby wave test cases (left) and (right), respectively.
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where /0 is the ðh;/Þ – latitude of the modon center, and /a is the ðh0;/0Þ – latitude separating the inner and outer parts of the
modon, C0 is the modon velocity. This expressions the functions Fdð/0Þ and Fmð/0Þ are given by
Fdð/0Þ ¼
Fd

o if /0 6 /a;

Fd
i if /0 > /a;

(

similarly we can define
Fmð/0Þ ¼
Fm

o if /0 6 /a;

Fm
i if /0 > /a;

(

Where
Fd
oð/

0Þ ¼
P1
�1=2þikð� sinð/0ÞÞ

P1
�1=2þikð� sinð/aÞÞ

; ð28Þ

Fm
o ð/

0Þ ¼ �
P0
�1=2þikð� sinð/0ÞÞ

P1
�1=2þikð� sinð/aÞÞ

; ð29Þ

Fd
oð/

0Þ ¼ �b
P1

aðsinð/0ÞÞ
P1

aðsinð/aÞÞ
þ ð1þ bÞ cosð/0Þ

cosð/aÞ
; ð30Þ

Fm
o ð/

0Þ ¼ �b
P0

aðsinð/0ÞÞ
P1

aðsinð/aÞÞ
� ð1þ bÞ sinð/0Þ � sinð/aÞ

cosð/aÞ

� �
�

P0
�1=2þikð� sinð/aÞÞ

P1
�1=2þikð� sinð/aÞÞ

þ b
P0

aðsinð/aÞÞ
P1

aðsinð/aÞÞ
; ð31Þ
where b ¼ ðk2þ1
4Þþ2

aðaþ1Þ�2 and Pm
m ðsinð/ÞÞis the Legendere function of non-negative order m and any arbitrary complex number m de-

fined by Verkley [14]. For Eq. (24) on a sphere we define k ¼ 10;a ¼ 10 and /a ¼ 1:1543ð66:14�Þ and D ¼ 0 and /0 ¼ 0 at
time t where h0 ¼ p.
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Fig. 13. Relation between � and error ðkuðpÞ � uPðpÞk1Þ at time t ¼ 0 for Eq. (24).

Fig. 14. Initial modon (left) and its adaptive grid (right).
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Here we take Eq. (24) at time t ¼ 0 and plot the relation between � and error, see in Fig. 13. Furthermore, we also plotted
initial solution ðt ¼ 0Þ its adaptive grid in Fig. 14 left and right respectively. Moreover, compression coefficient C ¼ 87. Again
in Fig. 15, is cleared that compression coefficient C increases when wavelet prescribed threshold parameter ð�Þ increases,
means when � goes to zero, the compression coefficient goes to one (uniform grid). The solution and its adaptive grid using
MAWCM with Runge–Kutta time integration scheme after 10 days are plotted in Fig. 16 for � ¼ 10�4. Here the adaptive grid
captures the solution very well which is the strength of MAWCM. In particular, the solution of non-divergent barotropic
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Fig. 15. Relation between compression coefficient C and � for Eq. (24) at time t ¼ 0.

Fig. 16. After 10 days modon (left) and its adaptive grid (right).
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Fig. 17. Time evolution of the normalized conservation of potential enstrophy (left) and time series error (right) for test case-2.
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vorticity equation is in this form of traveling around the earth from west to east with constant angular velocity and the initial
structure is well maintained with only minimal vacillations in shape. Moreover, the conservation errors of potential enstro-
phy are presented in Fig. 17 (left). It is shown that the errors for the potential enstrophy are of the same order. Furthermore
we also computed time series error see in Fig. 17 (right).

6. Summary and future work

The conclusion is that the numerical integration of the non divergent barotropic vorticity equation on an adaptive grid in
our MAWCM (falls in the category of the wavelet based methods) gives very good approximate solution for chosen initial
conditions. This non-divergent barotropic equation is our primary test for this method. The future importants of this MAW-
CM on sphere can be extension to the primitive equations for large scale motion of the atmosphere as well as small scale.
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