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This paper proposes an adaptive meshfree spectral graph wavelet method to solve partial 
differential equations. The method uses radial basis functions for interpolation of functions 
and for approximation of the differential operators. It uses multiresolution analysis based 
on spectral graph wavelet for adaptivity. The set of scattered node points is subject to 
dynamic changes at run time which leads to adaptivity. The beauty of the method lies in 
the fact that the same operator is used for the approximation of differential operators and 
for the construction of spectral graph wavelet. Initially, we have applied the method on 
spherical diffusion equation. After that the problem of pattern formation on the surface 
of the sphere (using Turing equations) is addressed to test the strength of the method. 
The numerical results show that the method can accurately capture the emergence of the 
localized patterns at all the scales and the node arrangement is accordingly adapted. The 
convergence of the method is verified. For each test problem, the CPU time taken by the 
proposed method is compared with the CPU time taken by a traditional method (spectral 
method using radial basis functions). It is observed that the adaptive meshfree spectral 
graph wavelet method is highly efficient.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In many real world problems, partial differential equations (PDEs) are needed to be solved. Examples of this exist in 
the areas of mathematical physics, fluid dynamics, image processing, medical imaging, computer graphics, and pattern for-
mation. Many attractive mathematical properties of wavelets (namely efficient multiscale decompositions, compact support, 
vanishing moments and the existence of fast wavelet transform etc.) together with the techniques for preconditioning and 
compression of operators and matrices, motivate their use for numerical solution of PDEs. Wavelet methods have been 
developed for most kinds of linear PDEs such as Laplace/Poisson equations [7] and advection diffusion problems [35]. For 
nonlinear PDEs also, there exist a large spectrum of wavelet methods, for example Burgers equation [33,45], reaction–
diffusion equations [41] and Stokes equation [10].

While solving a PDE numerically one can either choose to work on a static node arrangement [47] constructed at the 
beginning of the computation or can opt for an adaptive node arrangement which will keep on modifying itself according to 
the numerical solution of PDE at different times [1,3,29,37]. A large set of nodes is required to discover all the features of the 
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solution with a static node arrangement but this will increase the computational as well as storage cost. In some cases the 
set required for a static node arrangement to capture all the features of the solution may exceed the practical limitations. 
To deal with these problems we work on an adaptive node arrangement. In case of an adaptive node arrangement, instead 
of taking a larger set of nodes, more nodes are added only in the areas where the solution of PDE is having sharp features. 
Computational and storage costs will be saved by using an adaptive node arrangement.

For the generation of adaptive node arrangement, an indicator function is required to guide the refinement. For example 
in shock capturing schemes, it is the gradient which may serve as an indicator, while in the level set capturing curvature 
serves the purpose in a better way [26]. In this paper, we use the multiresolution analysis (MRA) based on spectral graph 
wavelet to guide the node arrangement adaptation.

For more than a decade, wavelets have been used to efficiently solve PDEs that exhibit multiscale solutions [2,6,25,28,
33,38,45] on the manifolds with zero curvature. The critical issue is to solve PDEs on general manifolds. Many techniques 
have been developed to construct wavelets on general manifolds. In [5,8] wavelet bases are constructed on a specific kind 
of manifolds which can be represented as disjoint union of smooth parametric images of a standard cube. The construction 
is based solely on smooth parametrization of the unit cube, which has several disadvantages from a practical point of view. 
This problem is resolved in [9], where finite element based wavelet bases with respect to an arbitrary initial triangularization 
are constructed. Wavelets are constructed on the sphere in [21].

Despite the existence of vast literature of wavelets on general manifolds, the wavelet theory for numerical solutions of 
PDEs on general manifold is still in its nascent stage. In [34], second generation wavelets are used to solve PDEs on the 
sphere. The main difficulty with second generation wavelet is that an initial mesh structure is required to approximate 
the manifold (e.g. sphere can be approximated using an icosahedron mesh). However, it is difficult to find an initial mesh 
structure to approximate a general manifold.

This difficulty can be handled with meshfree methods. Meshfree methods are formulated based on a set of scattered 
nodes and mesh-related difficulties are avoided as no mesh is used. For details of meshfree methods in PDEs, one can 
see [13,14]. In [13], meshfess approximation methods, such as radial basis function and moving least square method are 
discussed from a scattered data approximation and PDEs point of views. [14] is a collection of research papers contributing 
to the development of this field of research. Hitherto, the meshfree methods based on wavelets are very less developed and 
to best of our knowledge, the developed wavelet-meshfree methods are limited to flat geometry [27,46].

The spectral graph wavelet was introduced in the year 2011 [24]. The main aim of the construction of this wavelet is to 
accommodate complicated manifolds. Moreover, the construction of this wavelet does not require a mesh to discretize the 
manifold. These features make the spectral graph wavelet a suitable candidate for meshfree methods on general manifolds. 
We will use MRA based spectral graph wavelet for the dynamic adaptation of the node arrangement.

The adaptive meshfree spectral graph wavelet method (AMSGWM) will use radial basis functions (RBFs) for interpolation 
of functions and for approximation of the differential operators. The theory of interpolation of continuous functions by RBFs 
is well understood [4,18,20,30,36,40]. Their use in numerical solutions of PDEs started in the year 1990 with the work 
E. J. Kansa [31,32] and research in this direction is progressing till date [12,15–17,19,39].

In order to test the capacity of the proposed method to resolve the local features at different scales, we applied it on 
the problem of pattern formation on the surface of the sphere (using Turing equations, which exhibit a highly multiscale 
solution). The numerical results show that the method can accurately capture the emergence of the localized patterns at all 
the scales and the node arrangement is accordingly adapted.

The paper is organized as follows: section 2 gives a brief description of the spectral graph wavelet. In section 3, different 
tools required by AMSGWM for numerical solution of PDEs are developed. Section 4 contains the numerical results of 
AMSGWM with special stress on Turing patterns on the sphere. Section 5 concludes the work done and gives a brief idea of 
the future direction.

2. A brief description of spectral graph wavelet

In this section, we will give a brief description of the spectral graph wavelet constructed in [24]. The wavelet is con-
structed on an arbitrary finite weighted graph. A weighted graph G = {E, V , w} consists of a set of vertices V , a set of 
edges E , and a weighted function w : E → R

+ which assigns a positive weight to each edge. Suppose the graph is finite 
(i.e., the number of vertices in the graph < ∞). The adjacency matrix A = {am,n} for the weighted graph G is the N × N
matrix where

am,n =
{

w(e) if e ∈ E connects vertices m and n
0 otherwise.

It will be assumed that the graph is undirected (which will imply that the matrix A is a symmetric matrix). It should be 
noted that when we are dealing with PDEs the graphs on which we are working is finite and connected.

For a weighted graph, the degree of each vertex m, written as d(m), is defined as the sum of weights of all the edges 
incident to it, i.e., d(m) =

∑
n

am,n . A matrix D is defined as a diagonal matrix with d(m) as the diagonal entries. A nonnor-

malized Laplacian for the graph is defined as L = D − A.
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Fig. 1. A finite difference mesh.

For a graph arising from a regular mesh, the graph Laplacian corresponds to the standard stencil approximation of the 
continuous Laplace Beltrami operator with a difference in sign. For example for the mesh shown in the Fig. 1, the adjacency 
matrix A and the matrix D are given by

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1
δx2 0 0 0

1
δx2 0 1

δx2 0 0
0 1

δx2 0 1
δx2 0

0 0 1
δx2 0 1

δx2

0 0 0 1
δx2 0

⎤
⎥⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎢⎣

1
δx2 0 0 0 0
0 2

δx2 0 0 0
0 0 2

δx2 0 0
0 0 0 2

δx2 0
0 0 0 0 1

δx2

⎤
⎥⎥⎥⎥⎥⎦

Hence

L = 1

δx2

⎡
⎢⎢⎢⎣

1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤
⎥⎥⎥⎦

which is the central finite difference approximation of −∇2 with Neumann boundary conditions.
For any f ∈R

N defined on the vertices of the graph G , its graph Fourier transform f̂ is defined by

f̂ (l) = 〈χl, f 〉 =
N∑

n=1

χ∗
l (n) f (n),

where {χl, l = 0, 1, 2, · · · , N − 1} are the eigenvectors corresponding to the eigenvalues 0 = λ0 < λ1 ≤ λ2 · · · ≤ λN−1 of the 
matrix L. Note that since the graph Laplacian L is a real symmetric matrix, it has a complete set of orthonormal eigen 
vectors. The inverse graph Fourier transform is

f (n) =
N−1∑
l=0

f̂ (l)χl(n).

2.1. Spectral graph wavelet transform (SGWT)

A kernel function g : R+ → R
+ is chosen satisfying g(0) = 0 and lim

x→∞ g(x) = 0 (we will refer g as wavelet kernel). For 
the wavelet kernel g , the wavelet operator T g = g(L) acts on a given function f by modulating each Fourier mode as

T̂ g f (l) = g(λl) f̂ (l),

which implies

(T g f )(m) =
N−1∑
l=0

g(λl) f̂ (l)χl(m).

The wavelet operator at scale t is then defined by T t
g = g(tL). It should be noted that even though the spatial domain of 

the graph is discrete, the domain of the wavelet kernel g is continuous and thus the scaling may be defined for any positive 
real number t . The spectral graph wavelets are defined as

ψ t
n = T t

gδn,

where δn represents the Kronecker’s delta which takes value 1 at the nth vertex and 0 otherwise. This implies

ψ t
n(m) = T t

gδn(m) =
N−1∑
l=0

g(tλl)δ̂n(l)χl(m) =
N−1∑
l=0

g(tλl)χ
∗
l (n)χl(m).

The wavelet coefficients of a function f are obtained by taking the inner product of that function with these wavelets, as
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W f (t,n) = 〈ψ t
n, f 〉 (SGWT).

Using the orthonormality of the {χl}, the wavelet coefficients can be achieved directly from the wavelet operators as

W f (t,n) = (T t
g)(n) =

N−1∑
l=0

g(tλl) f̂ (l)χl(n). (1)

2.2. Spectral graph scaling function transform (SGST)

Initially, the spectral graph scaling functions are determined by a single real valued function h : R+ → R which satisfies 
h(0) > 0 and lim

x→∞ h(x) = 0 (we will refer h as scaling function kernel). Which are given by

φn = Thδn = h(L)δn,

and the scaling function coefficients are given by

S f (n) = 〈φn, f 〉 (SGST). (2)

Note that the scaling functions defined in this way are present merely to smoothly represent the low frequency content of 
the function f . They do not generate the wavelets ψ through the two-scale relation as for traditional orthogonal wavelets.

2.3. Fast SGWT and fast SGST

The naive way of computing SGWT and SGST, by directly using equation (1) and equation (2) respectively, requires 
explicit computation of entire set of eigenvalues and eigenfunctions of the Laplacian operator L. This approach is compu-
tationally inefficient for large graphs. A fast transform that avoids the need for computing the complete spectrum of L is 
needed for SGWT and SGST to be a useful tool for practical computational problems (see Fig. 2).

In order to achieve this the wavelet kernel g and the scaling function kernel h are approximated by low order polyno-
mials.

The kernels g and h are approximated by their Chebyshev polynomial expansions. The Chebyshev polynomials Tk(x) may 
be generated by the stable recurrence relation Tk(x) = 2xTk−1(x) − Tk−2(x), with T0(x) = 1 and T1(x) = x. For x ∈ [−1, 1], 
they satisfy the trigonometric expression Tk(x) = cos(k cos−1(x)). The Chebyshev polynomials form an orthogonal basis for 
L2([−1, 1], dx√

1−x2
). Every f ∈ L2([−1, 1], dx√

1−x2
) has a convergent Chebyshev series

f (x) = 1

2
e0 +

∞∑
k=1

ek Tk(x),

with the Chebyshev coefficients

ek = 2

π

1∫
−1

Tk(x) f (x)√
1 − x2

dx = 2

π

π∫
0

cos(kθ) f (cos θ)dθ.

For a fixed wavelet scale t j , approximating g(t j x) for x ∈ [0, λmax] (where λmax is the largest eigenvalue of the operator L) 
can be done by shifting the domain using the transformation y = a(x + 1) with a = λmax

2 . Denote the shifted Chebyshev 
polynomials T k(x) = Tk

( x−a
a

)
. We may then write

g(t jx) = 1

2
e j

0 +
∞∑

k=1

e j
k T k(x), (3)

valid for x ∈ [0, λmax], with

e j
k = 2

π

π∫
0

cos(kθ)g(t j(a cos θ + 1))dθ.

For each scale t j , the approximating polynomial p j is achieved by terminating the Chebyshev expansion given by the 
equation (3) to M j terms. Exactly same scheme is used to approximate the scaling function kernel h by the polynomial p0.

The selection of the values of M j may be considered a design problem, posing a trade off between accuracy and compu-
tational cost. The approximate wavelet and scaling function coefficients are given by
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Fig. 2. Fast SGST and SWGT.

W̃ f (t j,n) = 1

2
e j

0 f (n) +
M j∑

k=1

e j
k T k(L) f (n),

S̃ f (n) = 1

2
e0

0 f (n) +
M j∑

k=1

e0
k T k(L) f (n).

2.4. Spectral graph wavelet frames

The spectral graph wavelets depend on the continuous scale parameter t . For any practical computation, t must be 
sampled to a finite number of scales. Choosing J scales {t j} J

j=1 will yield a collection of N J wavelets ψ t j
n = ψ

j
n , along with 

N scaling functions φn . The capacity of this set of vectors for representing functions on the graph is given by the following 
theorem.

Theorem. Given a set of scales {t j} J
j=1 , the set {φn}N

n=1 ∪ {ψ j
n } J N

j=1,n=1 forms a frame with bounds A, B given by

A = min
λ∈[0,λN−1] G(λ),

B = max
λ∈[0,λN−1] G(λ),

where G(λ) = h2(λ) +
∑

j

(g(t jλ))2 . Hence any function f defined on the graph can be written as

f (n) =
N∑

k=1

ckφk(n) +
J∑

j=1

N∑
k=1

d j
kψ

j
k (n), (4)

where {ck}N
k=1 are the scaling function coefficients and {d j

k}N
k=1 are wavelet coefficients at the scale j [24].

3. Adaptive meshfree spectral graph wavelet method (AMSGWM)

In this section we will explain AMSGWM. The RBFs are used for approximating Laplace–Beltrami and gradient operators. 
The approximated Laplace–Beltrami operator will serve the purpose of the matrix L in the construction of spectral graph 
wavelet. The beauty of the method lies in the fact that the same operator is used for the approximation of the differential 
operator involved in the differential equation and for the construction of the spectral graph wavelet.
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3.1. Approximation of the Laplace–Beltrami and gradient operator using RBFs

Let X be the manifold and X N = {x1, x2, · · · , xN } be its discretization using N points. The RBFs are derived from bizonal 
kernels 	 : X × X → R of the form 	(x, y) = ϕ(x · y), x, y ∈ X . Here ϕ is a univariate function defined on [−1, 1] and x · y
is Euclidean dot product of the position vectors of the points x, y ∈ X .

For a fixed value of x, the value of 	(x, y) depends only on the geodesic distance from x to y, hence the function 	(x, ·)
is radially symmetric function with respect to the point x and is therefore called an RBF [22]. For every point x j ∈ X N , an 
RBF is defined as

	 j(x) = 	(x, x j) = ϕ(x · x j) = �(|x − x j|). (5)

We have used Wendland’s RBFs which depend on two parameters d and k, where d is the dimension of the space and 2k is 
the smoothness of the function � . For these RBFs the matrix A = [	 j(xi)]N

i, j=1 is positive definite and hence invertible for 
every X N .

Given a continuous function f on X , there uniquely exists a sequence of numbers { f̃ j}N
j=1 such that the function

I X N f (x) =
N∑

j=1

f̃ j	 j(x), (6)

satisfies the interpolating condition

I X N f (xk) = f (xk), 1 ≤ k ≤ N.

Put x = x1, x2, · · · , xN in equation (6) to get⎡
⎢⎢⎢⎣

f (x1)

f (x2)
...

f (xN)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

	1(x1) 	2(x1) · · · 	N(x1)

	1(x2) 	2(x2) · · · 	N(x2)
...

...
...

...

	1(xN) 	2(xN) · · · 	N(xN)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

f̃ 1

f̃ 2

...

f̃ N

⎤
⎥⎥⎥⎦ ,

which can be written in matrix form as

f = Af̃.

Now since the matrix A is invertible

f̃ = A−1f,

where f = [ f (x1), f (x2), · · · , f (xN )]′ etc. Hence

f (x) ≈ I X N f (x) =
N∑

j=1

f̃ j	 j(x). (7)

A result in [23] says that ‖ f − I X N f ‖∞ ≤ C‖ f ‖Hs(Rd)h
k+ 1

2 , therefore E(k)( f ) = ‖ f −I X N f ‖∞
‖ f ‖H2+k(Rd )

= O (N−(k+ 1
2 )). Fig. 3b shows the 

variation of E(k)( f ) with N for different values of k for f (x) = 4
5ν e− (a−1)2+b2+c2

5ν , ν = 1
2π2 (with (a, b, c) ∈ X = S2, the unit 

sphere) which is shown in the Fig. 3a.
Equation (7) implies

∇2 f (x) ≈
N∑

j=1

f̃ j∇2	 j(x) = Bf̃ = BA−1f, B = [∇2	 j(xi)]N
i, j=1.

Therefore the matrix D(2) = BA−1 is an approximation of the Laplace–Beltrami operator ∇2 on X . Applying gradient oper-
ator on both sides of the equation (7)

�∇ f (x) ≈
N∑

j=1

f̃ j �∇	 j(x) = C f̃ = CA−1f, C = [ �∇	 j(xi)]N
i, j=1.

It is clear that the matrix �∇app = CA−1 approximates the gradient operator �∇ on X . For computation of the entries of the 
matrices A and C one can see [23]. The error in approximation of Laplace Beltrami operator is E(k)(∇2 f ) = ‖∇2 f −D(2) f ‖∞

‖∇2 f ‖ =

H2+k(Rd)
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Fig. 3. f (x) = 4
5ν e− (a−1)2+b2+c2

5ν , E(k)( f ) versus N , E(k)(∇2 f ) versus N .

Fig. 4. Error while computing gradient operator of f (x) = 4
5ν e− (a−1)2+b2+c2

5ν .

O (N−(k− 3
2 )). Fig. 3c shows the convergence of D(2) to the Laplace–Beltrami operator ∇2. The error introduced in approxi-

mating the gradient operator is E(k)(( �∇ f )a) = ‖( �∇ f )a−(D(1) f )a‖∞
‖( �∇ f )a‖H2+k(Rd)

= O (N−(k− 1
2 )). Note that here ( �∇ f )a stands for component 

of the vector �∇ f in the direction of the unit vector î etc. Fig. 4 shows the convergence for f (x) = 4
5ν e− (a−1)2+b2+c2

5ν . The 
expected orders of convergence are achieved.

3.2. Interpolation using RBFs

Suppose we have two sets of node points Xc and X f (Xc is the coarse set and X f is fine set). Suppose { f (x j)}x j∈Xc is 
known. Using RBFs we can compute { f (x j)}x j∈X f as follows

{ f (x j)}x j∈Xc = [	(xi, x j)]{xi ,x j∈Xc}{ f̃ j} j=1,2,··· ,#Xc
,

{ f (x j)}x j∈X f = [	(xi x j)]{xi∈X f ,x j∈Xc}{ f̃ j} j=1,2,··· ,#Xc
,

{ f (x j)}x j∈X f = [	(xi, x j)]{xi∈X f ,x j∈Xc}[	(xi, x j)]−1
{xi ,x j∈Xc}{ f (x j)}x j∈Xc .

3.3. Reconstruction and compression error

For any f : V → R defined on the vertices of the graph and a given threshold ε , equation (4) can be written as f (n) =
f≥ε(n) + f<ε(n), where

f≥ε(n) =
N∑

k=1

ckφk(n) +
J∑

j=1

∑
|d j

k|≥ε

d j
kψ

j
k (n) and f<ε(n) =

J∑
j=1

∑
|d j

k|<ε

d j
kψ

j
k (n).

‖ f − f≥ε‖ is called the compression error and for ε = 0 there is no compression and in that case it is reconstruction error. 
The number of the node points required for f≥ε is called number of significant coefficients denoted by N(ε). Donoho in 
[11] proved that for sufficiently smooth f
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Fig. 5. Variation of compression error versus ε and N(ε) for test function 1.

Fig. 6. Test function 1 and the corresponding reconstructed function for different values of ε .

‖ f − f≥ε‖∞ < Cε, (8)

where C is a constant.

• We have taken the test function 1 as; f (x) = − tanh
( x+x0

2ν

) + e−642(x−x0)2
with x0 = 1

3 and ν = 10−3 on the interval 
[−1, 1]. Following results are obtained
– The reconstruction is of the order 10−8 for N = 128.
– Fig. 5a shows the relation between the compression error ‖ f − f≥ε‖p and the threshold ε . It can be observed that 

the relation (8) is satisfied.
– Fig. 5b shows the graph between the compression error and N(ε) for ε = 10−1. It can be observed that, the com-

pression error decreases with N(ε).
– Fig. 6a and Fig. 6b show f (x) and the f≥ε(x) for ε = 10−1 and ε = 10−4 respectively.

• We have taken the test function 2 as; f (x) = e−50(a+1)2 + e−50(b+1)2
, x = (a, b) ∈ [−1, 1] × [−1, 1] shown in the Fig. 8a. 

Following results are obtained
– The reconstruction is of the order 10−8 for N = 128.
– Fig. 7a shows the relation between the compression error ‖ f − f≥ε‖p and the threshold ε .
– Fig. 7b shows the graph between the compression error and N(ε) for ε = 10−1.
– Fig. 8b and Fig. 8c show f≥ε(x) for ε = 10−1 and ε = 10−4 respectively.

• We have taken test function 3 as; f (x) = 4
5ν e

−((a−a0)2+(b−b0)2+(c−c0)2)

5ν , a0 = 1, b0 = 0, c0 = 0 and ν = 1
2π2 on the unit sphere 

shown in Fig. 10a. Following results are obtained
– The reconstruction is of the order 10−8 for N = 128.
– Fig. 9a shows the relation between the compression error ‖ f − f≥ε‖p and the threshold ε .
– Fig. 9b shows the graph between the compression error and N(ε) for ε = 10−1.
– Fig. 10a and Fig. 10b show f≥ε(x) for ε = 10−1 and ε = 10−4 respectively.
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Fig. 7. Variation of compression error versus ε and N(ε) for test function 2.

Fig. 8. Test function 2 and the corresponding reconstructed function for different values of ε .

Fig. 9. Variation of compression error versus ε and N(ε) for test function 3.

3.4. Adaptive node arrangement

Node adaptation occurs quite naturally in wavelet methods [25,33]. One of the important property of wavelet is that 
the wavelet coefficients d j

k decreases rapidly for smooth functions. Moreover, if a function has a discontinuity in one of its 
derivatives then the wavelet coefficients will decrease slowly only near the point of discontinuity and maintain fast decay 
where the function is smooth. This property of wavelet makes it suitable to detect where in the numerical solution of a PDE 
the shocks are located and hence an adaptive node arrangement can be generated.

In case of spectral graph wavelet, if {t j} J
j=1 is the set of scales, then d j

k follows the above said fact strictly when j is 

near J . Fig. 11 and Fig. 12 show d j
ks for two different functions for different values of j (note that the J = 4). Hence we 

will consider d J
k s (wavelet coefficients at scale t J ) for node adaptation.

To illustrate the algorithm for node adaptation, let us consider a function f (x) defined on a set of node points Gold and 
a pre-decided threshold parameter ε . Perform SGST and SGWT to obtain the set of coefficients {ck}|G

old|
k=1 ∪ {d j

k} J |Gold |
j=1,k=1 . We 

will construct Gnew (fine node arrangement) from Gold (coarse node arrangement). Since each xk ∈ Gold is associated with a 
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Fig. 10. Test function 3 and the corresponding reconstructed function for different values of ε .

Fig. 11. d j
k for different value of j for f (x) = − tanh

( x+x0
2ν

) + e−642(x−x0)2
, x0 = 1

3 , ν = 10−3.

Fig. 12. d j
k for different value of j for f (x) = x, if 0 < x < 0.5 and x − 1 otherwise.

spectral scaling function φk , we will keep all the points of Gold in Gnew . We recall that every spectral wavelet function at the 
scale t J , i.e. ψ J

k , is uniquely associated with an xk ∈ Gold . Analyze wavelet coefficients d J
k . If |d J

k | ≥ ε , then the corresponding 
node point xk ∈ Gold is called an active node point. For each active node point xk , an adjacent zone will be added in Gnew . 
Adjacent zone will serve the following two purposes:

1. It will make Gnew finer in the area of sharp features.
2. In solving evolution PDEs, additional criteria for node adaptation should be added. In particular, the computational set 

of node points should consist of node points associated with wavelets whose coefficients are or can possibly become 
significant during the period of the time when the set of node points remain unchanged [33].
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Fig. 13. Adjacent zone.

Fig. 14. Functions and the corresponding adaptive node arrangements for different functions in one dimensional setting for R = 0.1 and M = 4.

For an active node point xk , we fix two positive numbers R and M (called adjacent zone constants). These parameters are 
problem dependent. In the region geodis(x − xk) ≤ R (geodis stands for the geodesic distance) we obtain M points simulating 
the surface of the manifold. This will be called the adjacent zone of the point xk . For example as shown in the Fig. 13, if 
node point 4 is an active node point then for M = 4 we have added 4 points in the region geodis(x − x4) ≤ R . The process 
of spectral graph wavelet based adaptive node arrangement generation is as follows

Gnew = AdaptiveNodeArrangement( f , Gold)

• Choose a threshold parameter ε and positive adjacent zone constants R and M .
• m = 0
• Gm = Gold

• f m = f
• do while m = 0 or Gm �= Gm−1

– Perform SGWT on f m to get {d J
k }|Gm|

k=1 .
– Gm+1 = Gm .
– Analyze wavelet coefficients {d J

k }|Gm|
k=1 and collect all the active node points.

– Corresponding to each active node point, add an adjacent zone in Gm+1.
– Interpolate f m onto new grid Gm+1 using RBFs as explained in section 3.2 and call it f m+1.
– m = m + 1

• Gnew = Gm

Fig. 14a and Fig. 14b show the adaptive node arrangement for two different functions in one-dimensional setting using 
the above defined algorithm. Fig. 15 shows two different functions on the sphere and the corresponding adaptive node 
arrangement.

3.5. Calculation of differential operators on an adaptive node arrangement

While solving PDEs numerically, it is necessary to approximate differential operators of a function from its values at 
collocation point. A procedure to approximate differential operators, which takes advantage of multiresolution wavelet de-
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Fig. 15. Functions and the corresponding adaptive node arrangements for different functions on the sphere for R = 0.1 and M = 4.

Fig. 16. ‖∇2 f≥ε −D2f≥ε‖ versus N(ε).

composition, fast wavelet transform, and finite difference differentiation is discussed in [45] for one dimensional case, and 
in [44] for multiple dimensions, but restricted to rectangular domains and flat geometry.

We will use RBFs to obtain the approximation of differential operators on an adaptive node arrangement. We have 
already computed Laplace–Beltrami and gradient operators using RBFs in section 3.1. For the sake of completeness, we 
describe here the computation of a general differential operator T , using RBFs on a node arrangement G . Given { f (x j)}x j∈G , 
{T f (x j)}x j∈G can be computed as follows

{ f (x j)}x j∈G = [	(xi, x j)]{xi ,x j∈G}{ f̃ j} j=1,2,··· ,#G,

{T f (x j)}x j∈G = [T 	(xi x j)]{xi ,x j∈G}{ f̃ j} j=1,2,··· ,#G .

Hence

{T f (x j)}x j∈G = [T 	(xi x j)]{xi ,x j∈G}[	(xi, x j)]−1
{xi ,x j∈G}{ f (x j)}x j∈G .

Fig. 16 verifies the convergence of the approximate Laplace–Beltrami operator on an adaptive node arrangement.
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3.6. Numerical algorithm for PDEs

We now have all the ingredients necessary to construct an adaptive meshfree spectral graph wavelet method for the 
solution of PDEs on general manifold. The basic steps of the algorithm are the following

1. Knowing the solution u≥(t) on the node arrangement Gt , we construct Gt+�t using Gt+�t = AdaptiveNodeArrangement
(u≥(t), Gt).

2. If there is no change between the node arrangements Gt and Gt+�t , we go directly to next step. Otherwise we interpo-
late the solution onto the new node arrangement Gt+�t using RBFs as explained in section 3.2.

3. Compute the differential operators involved in the PDE on Gt+�t as explained in section 3.5.
4. We integrate the resulting system of ordinary differential equations in time (i.e. using Runge–Kutta) to obtain the 

solution u≥(t + �t) at time t + �t .
5. Perform several time steps on the same node arrangement. (Note that how many steps to take between node arrange-

ment evaluations depends on the problem at hand. If the problem is such that its solution is rapidly changing, then 
the node arrangement is needed to be evaluated frequently. If the solution is slowly changing, then the same node 
arrangement can be used for many time steps.)

The order of accuracy of the proposed method before introducing the adaptivity is O (N−3/2 + �t) (k = 3 in numerical 
experiments). For a threshold ε , the error introduced during adaptivity is O (ε). Therefore the order of accuracy of the final 
scheme is O ((N(ε))−3/2 + �t + ε).

4. Numerical results

In order to illustrate the accuracy and efficiency of the proposed numerical method, initially we apply it to a simple 
problem of spherical diffusion. Then the method is applied to a more challenging problem of pattern formation on the unit 
sphere (using Turing equations).

4.1. Spherical diffusion equation

For the first test problem, we consider diffusion equation

∂u(x, t)

∂t
= ν∇2u(x, t) + f , x ∈ X = S2, (9)

where f is a localized source chosen in such a way that the solution of the diffusion equation is given by

u(x, t) = e− (θ−θ0)2+(φ−φ0)2

ν(t+1) ,

(r, θ, φ) is the spherical polar representation of the point x ∈ X = S2. The initial condition is obtained from the analytic 
solution, and the problem is solved for the parameters ν = 1/(4π)2, θ0 = 0, φ0 = 0.

The solution of the problem and the corresponding adaptive node arrangement is shown in the Fig. 17 for ε = 10−4. In 
order to demonstrate the efficiency of the proposed method, we compared the CPU time taken by AMSGWM (denoted by 
CPU(ε)) with the CPU time taken by the spectral method using RBFs (denoted by CPU(ε = 0), note that regular spectral+RBF 
method uses the number of nodes equal to the maximum number of nodes used by AMSGWM). For this comparison we 
define a parameter � = CPU(ε=0)

CPU(ε)
and call it efficiency coefficient. The larger the efficiency coefficient, the more efficient 

the adaptive algorithm. � = 1 indicates that there is no compression and the node arrangement is non-adaptive. Fig. 18a 
shows the variation of � with ε . It is evident from the graph that as we increase ε , � will increase. Hence the method 
will be more efficient if we choose large value of ε . But for large value of ε , the error ‖unum − uana‖p (unum stands for the 
numerical solution of the problem and uana stands for the analytic solution) is also large. So we have to choose an optimal 
value of ε which makes a balance between the efficiency and accuracy.

Next, we test the convergence of the method. Fig. 18b shows the graph between the error (‖unum − uana‖p) and the 
number of significant node points N(ε). The expected order of convergence is achieved.

4.2. Turing patterns on the sphere

In 1952, A. M. Turing [42] settled the basis for explaining biological patterns using two interacting chemicals that, under 
certain conditions, can generate stable patterns from an initial near-homogeneity. This phenomenon has now been shown 
to occur in chemistry and biology. The Turing patterns are governed by a system of nonlinear reaction–diffusion equations. 
We solve the following system [43]
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Fig. 17. Evolution of the solution and dynamically adapted node arrangement for the spherical diffusion equation for ε = 10−4, R = 0.1 and M = 4.

Fig. 18. Results for spherical diffusion equation.

∂u

∂t
= Dδ∇2u + αu(1 − r1 v2) + v(1 − r2u),

∂v = δ∇2 v + βv

(
1 + αr1

uv

)
+ u(γ + r2 v). (10)
∂t β
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Fig. 19. Evolution of the solution and dynamically adapted node arrangement for the Turing problem for r1 = 3.5, r2 = 0, ε = 10−4, R = 0.1 and M = 4
(only one component u is shown).

At initial state, i.e., at t = 0 we consider u = v = 0, except on a narrow band as shown in Fig. 19a. The stable patterns can 
be either stripes or spots, depending on the parameters r1 and r2. The parameter r1 favors stripes while r2 favors spots. We 
fix the parameters D = 0.516, δ = 0.0045, α = 0.899, β = −0.91 and γ = −α.

As case 1, we take r1 = 3.5, r2 = 0. The evolution of the striped pattern and the corresponding adaptive node arrange-
ment is shown in the Fig. 19. It is evident that AMSGWM is able to track the emergence of banded structures over the 
entire sphere. This demonstrates that the proposed method is able to efficiently and accurately capture the emergence of 
the localized structures at multiscales which characterize the solution of nonlinear PDEs. Fig. 20 shows the variation of �
with respect to the threshold ε and this graph also gives a glimpse of the efficiency of the proposed method. It can be 
observed from the graph that, at ε = 10−1, � = 20 which means there is a 95% reduction in the CPU time. With the com-
putational facility available with us, we can not calculate CPU(ε = 0) at higher times and this is the reason we have shown 
the variation of � only at t = 18. But the efficiency of AMSGWM will increase with time.



K. Goyal, M. Mehra / Applied Numerical Mathematics 113 (2017) 168–185 183
Fig. 20. � versus ε for Turing problem for case 1 at t = 18.

Fig. 21. Evolution of the solution and the corresponding dynamically adapted node arrangement for the Turing problem for r1 = 0.02, r2 = 0.2, ε = 10−4, 
R = 0.1 and M = 4 (only one component u is shown).

Fig. 22. x − y maps of the solution and the corresponding dynamically adapted node arrangement for case 2 of Turing problem.
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Fig. 23. � versus ε for Turing problem for case 2 at t = 25.

As case 2, we take r1 = 0.02, r2 = 0.2. The evolution of the spot pattern and the corresponding adaptive node arrange-
ment is shown in the Fig. 21. To have a better view of the configuration of the spots, x − y maps of the solutions and the 
corresponding adaptive node arrangement is shown in the Fig. 22. Fig. 23 shows the variation of � with respect to the 
threshold ε .

5. Conclusion and future work

In this paper an adaptive meshfree spectral graph wavelet method is developed to solve PDEs. The method uses radial 
basis functions for interpolation of functions and for approximation of the differential operators. It uses MRA based spectral 
graph wavelet for the adaptation of the node arrangement. The efficiency and the convergence of the method is verified. The 
CPU time taken by AMSGWM and by the spectral method using RBFs has been compared and it turns out that AMSGWM 
performs much better. To best of our knowledge the useful properties of spectral graph wavelet are for the first time 
exploited to solve PDEs on an adaptive node arrangement. In future we will use AMSGWM to solve real life problems on 
complex manifolds and for turbulence modeling in particular.

Matlab codes

The 1D codes are provided on the following webpage: 
https://sites.google.com/site/drkavitagoyalmathematics/matlab-codes/adaptive-grid-using-spectral-graph-wavelet
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