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Abstract.

In this paper, we propose a wavelet-Taylor Galerkin method for the numerical solu-
tion of the Burgers equation. In deriving the computational scheme, Taylor-generalized
Euler time discretization is performed prior to wavelet-based Galerkin spatial ap-
proximation. The linear system of equations obtained in the process are solved by
approximate-factorization-based simple explicit schemes, and the resulting solution is
compared with that from regular methods. To deal with transient advection-diffusion
situations that evolve toward a convective steady state, a splitting-up strategy is known
to be very effective. So the Burgers equation is also solved by a splitting-up method
using a wavelet-Taylor Galerkin approach. Here, the advection and diffusion terms in
the Burgers equation are separated, and the solution is computed in two phases by
appropriate wavelet-Taylor Galerkin schemes. Asymptotic stability of all the proposed
schemes is verified, and the L∞ errors relative to the analytical solution together with
the numerical solution are reported.

AMS subject classification (2000): 65M70.
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1 Introduction.

The nonlinear parabolic equation ∂u
∂t +u∂u

∂x = ν ∂2u
∂2x known as the Burgers equa-

tion is one of the simplest combining both nonlinear propagation and diffusive
effects. It represents a first step in the hierarchy of approximation of Navier–
Stokes equations. Solutions to this equation exhibit a delicate balance between
the nonlinear advection and the diffusion terms. This equation is often used to
test numerical methods because an analytical expression for its solution is avail-
able for different sets of boundary and initial conditions, and these solutions
are known to develop very sharp gradients that are difficult to reproduce with
numerical methods.

Wavelet methods are a new numerical tool for solving partial differential equa-
tions (PDEs). Wavelets have many attractive features: orthogonality, arbitrary
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regularity, and good localization. Wavelet bases seem to combine the advantages
of both spectral and finite element bases. Wavelet analysis became important due
to their successful application in signal and image processing during the 1980s.
The study of wavelets attained its present growth after the mathematical analy-
sis of wavelets by Stromberg (1981) [22], Grossmann and Morlet (1984) [11], and
Meyer (1985) [20]. The multiresolution analysis of Mallat [19] and Meyer [21]
in (1989) lead to the Daubechies (1988) orthonormal family of wavelets. As
wavelet theory progressed and more tools became available, their use spread to
other areas besides signal processing.

A comparison of numerical solutions of the Burgers equation by the spectral
method and finite difference method (FDM) can be found in [3]. Since the birth
in the 1980s of wavelet methods, several works ([18, 14]) have been devoted to
the numerical solution of the Burgers equation using these methods. Most of
these works are based on the Galerkin projection to approximate the equation.
In general, the treatment of the nonlinear term is done using a pseudospectral
technique using some analytical interpolations. It results in a permanent back-
ward and forward motion between the physical and the wavelet space. As in the
case of spectral approximation, a method of collocation that allows working only
in the physical space would be suitable. Vasilyev et al. [23] have presented an
application of wavelet collocation to the Burgers equation.

In the conventional numerical approach to transient problems the accuracy
gained in using high-order spatial discretization is partially lost due to use of
low-order time discretization schemes. Here usually spatial approximation pre-
cedes temporal discretization. The reversed order of discretization can lead to
better time-accurate schemes with improved stability properties. The fundamen-
tal concept behind the Taylor–Galerkin approach is to incorporate more analyti-
cal information into the numerical scheme in the most direct and natural way, so
that the technique may be regarded as an extension to PDEs of the Obrechkoff
methods [12] for ordinary differential equations. In fact this concept is not new,
and similar procedures have already been considered in the context of finite
difference methods [15, 16, 17] and also in conjunction with a spectral type of
spatial representation [10]. Later Donea [6, 8] used it in deriving a time-accurate
finite element scheme. Their approach consists primarily in extending the Taylor
series in the time increment to the third order before spatial discretization. This
procedure has not been implemented so far in the wavelet approach to PDEs.
Wavelet bases are known for their spatial accuracy. The aim of this paper is to
formulate a wavelet-Taylor Galerkin method (W-TGM) for the Burgers equation
and generalized Burgers equation in one dimension. The approximate factoriza-
tion technique [7], when applied to the linear system resulting from applying
the numerical scheme, will lead to a simple explicit scheme for solving the linear
system. We compute the solution by explicit scheme and compare it with the
solution obtained from a usual matrix inversion. Next, a splitting-up method in
conjunction with appropriate wavelet-Taylor Galerkin schemes for advection and
diffusion phases for solving the Burgers equation is proposed. Usually, in dealing
with transient situations that evolve toward a highly convective steady state, the
W-TGM reduces to a wavelet Galerkin method as the temporal term vanishes.
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Especially in these cases the splitting-up method will be effective. This study,
we believe, can lead to the development of robust algorithms for the solution of
nonlinear multidimensional systems such as the Navier–Stokes equations.

The outline of the paper is as follows. In Section 2 we summarize some basics
of wavelet analysis. In Section 3 we consider the application of W-TGM to the
Burgers equation and generalized Burgers equation. This section is also devoted
to treating the approach to the steady state accurately. We propose the use
of a wavelet-Taylor Galerkin splitting-up method. We also discuss approximate
factorization techniques and explicit schemes in Section 4. In Section 5 we study
numerically the stability of the algorithm in these cases. Numerical results are
provided in Section 6. Finally, in Section 7 we draw a number of conclusions
based on our results.

2 Wavelet preliminaries.

2.1 Compactly supported wavelets.

The class of compactly supported wavelet bases was introduced by Daube-
chies in 1988 [5]. They are an orthonormal basis for functions in L2(R).
A “wavelet system” consists of the function φ(x) and the function ψ(x) referred
to as wavelet functions. We define translates of φ(x) as

(2.1) φi(x) = φ(x − i) .

Multiresolution analysis (MRA) is the theory used by Daubechies to show that
for any nonnegative integer n there exists an orthogonal wavelet with compact
support such that all the derivatives up to order n exist. MRA describes a se-
quence of nested approximation spaces Vj in L2(R) such that closure of their
union equals L2(R). MRA is characterized by the following axioms:

{0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · · ⊂ L2(R)
j=∞⋃

j=−∞
Vj = L2(R)

⋂

j∈Z

Vj = 0

f ∈ Vj if and only if f(2(.)) ∈ Vj+1

φ(x− k)k∈Z is an orthonormal basis for V0 .

(2.2)

We define Wj as the orthogonal complement of Vj in Vj+1, i.e., Vj ⊥Wj and

(2.3) Vj+1 = Vj +Wj .

2.1.1 Construction of wavelets from multiresolution analysis.

The construction of the wavelet basis stands on the fact that during the process
of refinement in the approximation one wants to only store the improvement from
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approximation j to approximation j+1. Mathematically, one introduces at each
step j subspace Wj , defined as the orthogonal complement of Vj in Vj+1. Then
one has the fundamental theorem proved by Mallat and Meyer:

Theorem 2.1. There exists a function of W0 such that ψ(x− k), k ∈ Z is an
orthonormal basis of W0. The function ψ has the regularity properties

(2.4)
∫
xkψ(x)dx = 0 for 0 ≤ k ≤ D/2 − 1 .

The function φj,k(x) = 2j/2φ(2jx− k)k∈Z is an orthonormal basis for Vj , and
the function ψj,k = 2j/2ψ(2jx− k)k∈Z is an orthonormal basis for Wj . Each
member of the wavelet family is determined by the set of constants ak (low-pass
filter) by the dilation equation

(2.5) φ(x) =
√

2
D−1∑

k=0

akφ(2x− k)

and the equation

(2.6) ψ(x) =
√

2
D−1∑

k=0

bkφ(2x− k) ,

where D is the order of the wavelet and bk = (−1)kaD−1−k, k = 0, 1, · · · , D− 1.
The scaling function φ and wavelet function ψ satisfy the following relations:

∫ ∞

−∞
φ(x)dx = 1 ,

∫ ∞

−∞
φj,k(x)φj,l(x)dx = δk,l ,

∫ ∞

−∞
ψi,k(x)ψj,l(x)dx = δi,jδk,l ,

∫ ∞

−∞
φi,k(x)ψj,l(x)dx = 0 j ≥ i .

2.2 Periodized wavelets.

Let φ ∈ L2(R) and ψ ∈ L2(R) be the scaling and wavelet function from
a MRA as defined in Section 2.1. For any j, l ∈ Z we define the 1-periodic
scaling function

(2.7) φ̃j,l(x) =
∞∑

n=−∞
φj,l(x+ n) = 2j/2

∞∑

n=−∞
φ(2j(x+ n) − l), x ∈ R
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and the 1-periodic wavelet

(2.8) ψ̃j,l(x) =
∞∑

n=−∞
ψj,l(x + n) = 2j/2

∞∑

n=−∞
ψ(2j(x+ n) − l), x ∈ R .

The 1 periodicity can be verified as follows:

φ̃j,l(x+ 1) =
∞∑

n=−∞
φj,l(x + n+ 1) =

∞∑

m=−∞
φj,l(x+m) = φ̃j,l(x)

and similarly ψ̃j,l(x+ 1) = ψ̃j,l(x).

2.3 Connection coefficients.

Any numerical scheme for solving differential equations must adequately rep-
resent the derivatives and nonlinearities of the unknown function. In the case
of wavelet basis, these approximations give rise to certain L2-inner products of
the basis functions, their derivatives, and their translates, called the connection
coefficients. Specific algorithms have been devised by Latto et al. [13]. In the
most general case we allow φl to be differentiated, which gives rise to the n-term
connection coefficients:

∧(l1, l2, · · · , ln, d1, d2, · · · , dn) = ∧d1d2···dn

l1l2···ln =
∫ ∞

−∞

n∏

i=1

φdi

li
(x) .

2.4 Projection onto space Vj.

Let PVjf be the projection of a function f onto Vj and

(2.9) PVjf(x) =
∞∑

k=−∞
c
(d)
j,k φ̃j,k(x), x ∈ R .

2.4.1 Interpolation.

Using interpolation is also a popular choice for projecting f onto Vj , either
as part of a collocation method, for instance in [9], but also within a Galerkin
scheme [1], and it is the method implemented in this paper. The coefficients cj,k
are chosen such that the projection of f onto Vj and f coincides at node points
of level j:

f(l/2j) =
2j−1∑

k=0

cj,kφ̃j,k(l/2j), l = 0, . · · · , 2j − 1 .

This can be rewritten as

f(l/2j) =
2j−1∑

k=0

cj,kφ̃j,k−l(l/2j), l = 0, . · · · , 2j − 1 .
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Therefore, calculating the coefficients cj,k reduces to solving a matrix equation

Fj = Tjcj ,

where Fj is the vector of components fj,l = f(l/2j) for l = 0, · · · , 2j − 1, cj is
the vector of coefficients cj,k for k = 0, · · · , 2j −1, and Tj is the circulant matrix
of size N = 2j.

Cost: If simple Gaussian elimination is used to solve this system, then the cost
of finding cj,k is heavy: O(n3) operations, where n is the order of the matrix.
Significantly better performance can be achieved using sparse matrix routines.
However, because this system is circulant, using FFT (Fast Fourier Transform),
the solution can be found in O(nlog2n) operations [1].

3 Variant of wavelet-Taylor Galerkin method (W-TGM).

3.1 Wavelet-Taylor Galerkin method.

3.1.1 Burgers equation.

The simplest equation that models physical situations where both nonlinear
advection and diffusion effects are important is the Burgers equation:

(3.1)
∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂2x
, 0 ≤ x ≤ 1 .

We consider periodic boundary conditions for (3.1) and initial condition u0(x).

Time discretization: We have used second-order W-TGM because too many
terms are introduced in the third-order time derivative term, especially for non-
linear problems. Let us leave the spatial variable x continuous and discretize
(3.1) in time by the following forward Taylor series expansion:

(3.2) (ut)n =
un+1 − un

∆t
− ∆t

2
un

tt −O(∆t2) ,

which includes first-order and second-order time derivatives. While the former
is provided directly by (3.1), the latter can be obtained by taking the time
derivative of the governing PDEs:

(3.3) ut = −1
2
∂x(u2) + ν∂2

xu .

The time derivative of (3.3) is

(3.4) utt = −∂x(uut) + ν∂2
xut ,

and the substitution of (3.3) and (3.4) into the Taylor series expansion (3.2)
gives

(3.5)
[
1− 1

2
∆t

(−∂xu
n−un∂x +ν∂2

x

)]
(un+1−un)/∆t = −1

2
∂x(un)2 +ν∂2

xu
n .
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Spatial discretization: To obtain a fully discrete equation we apply the wavelet
Galerkin method to (3.5) with an approximation of the form

(3.6) uj(x, t) =
2j−1∑

k=0

cj,k(t)φ̃j,k(x) ,

where cj,k is the unknown coefficient of scaling function expansion. The associ-
ated wavelet Galerkin equations are

cn+1
j,l − cnj,l

∆t

(
1 +

∆t
2

(
23j/2

∑

k

ml,k − ν(2j)2
∑

k

∧02
lk

))
(3.7)

= −23j/2
∑

k

∑

m

cnj,kc
n
j,m ∧001

lkm +ν(2j)2
∑

k

cj,k∧02
lk

for l = 0, 1, · · · , 2j − 1, and ml,k is given by the following expressions involving
the three-level connection coefficient given in Section 2.3:

ml,k =
∑

m

cnj,m
(∧001

lkm + ∧010
lkm

)
.

3.1.2 Generalized Burgers equation.

Here we consider the generalized Burgers equation

(3.8) ut + uβux + λuα = νuxx, 0 ≤ x ≤ 1, t ≥ 0

for constants α, β, ν ≥ 0, and real λ, together with an initial condition u0(x)
and periodic boundary conditions. We set α = β = 1.

Time discretization: The forward Taylor series expansion includes a second-
order term,

(3.9) (ut)n =
un+1 − un

∆t
− ∆t

2
un

tt −O(∆t2) ,

which includes first- and second-order time derivatives. While the former is pro-
vided directly by (3.8), the latter can be obtained by taking the time derivative
of the governing PDEs:

(3.10) ut = −1
2
∂x(u2) + ν∂2

xu− λu .

The time derivative of (3.10) is

(3.11) utt = −∂x(uut) + ν∂2
xut − λut ,
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and the substitution of (3.11) and (3.10) into the Taylor series expansion (3.9)
gives

[
(1 + λ∆t/2) − 1

2
∆t

( − ∂xu
n − un∂x + ν∂2

x

)]
(un+1 − un)/∆t(3.12)

= −1
2
∂x(un)2 + ν∂2

xu
n − λu .

The spatial discretization of this semidiscrete equation is achieved by the wavelet
Galerkin method (WGM).

3.2 Wavelet-Taylor Galerkin splitting-up method.

Here the basic idea is to test the strategy of the splitting-up method together
with W-TGM for the advection-diffusion equation as it can be directly extended
and used in multidimensional situations, for instance in solving Navier–Stokes
equations. Hence, we again consider the Burgers equation, which is usually con-
sidered a reasonably simple substitute for Navier–Stokes equations though it is
strictly not an advection-diffusion equation evolving toward a highly convective
steady state. The problem is decomposed into a nonlinear advection problem
followed by a pure diffusion problem. We will call it a W-TGMS scheme. Con-
sider:

(3.13) ut +Au = 0 ,

where A = A1 + A2, A1 = u∂x, and A2 = −ν∂2
x, and represent problem (3.13)

on each time interval ∆t = tn+1 − tn by

(3.14) uαt +Aαuα = 0, α = 1, 2 ,

with

(3.15) un+1
1 = un, un

2 = un+1
1 , un+1 = un+1

2 ,

where each phase is treated by W-TGM.

3.2.1 Advection phase.

The advection problem corresponds to (3.14) with α = 1:

(3.16) u1t +A1u1 = 0 .

The temporal discretization is achieved by second-order W-TGM

(3.17)

(
un+1

1 − un
1

)

∆t
= un

1t +
1
2
∆tun

1t +O(∆t2) ,

where un
1 = un. The spatial discretization of this semidiscrete equation is achiev-

ed by the WGM.
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3.2.2 Diffusion phase.

According to (3.14) with α = 2, the diffusion problem reads

(3.18) u2t +A2u2 = 0 ,

and a second-order temporal discretization is obtained by writing

(3.19)
(

1 +
1
2
∆tA2

) (
un+1

2 − un
2

)
/∆t = −A2u

n
2 ,

where un
2 = un+1

1 and un+1
2 = un+1. A spatially discrete form of (3.19) is again

obtained by the WGM. Periodic boundary conditions are incorporated into both
the advection and diffusion phase numerical schemes.

4 Approximate factorization techniques and explicit schemes.

The W-TGM and W-TGMS require solving at each time step a system of
linear algebraic equations of the form

(4.1) AV = F ,

where V = un+1 − un is the vector of nodal unknowns. F = F (un) is a known
vector and A varies with time and must be recomputed; the exact factoriza-
tion of the matrix will lead to a significant computational expense. Therefore,
approximate factorization techniques appear to be quite attractive for these ap-
plications.

In the present context it is indeed essential to retain the consistent character of
the wavelet-Taylor Galerkin “mass” matrix A in the approximate factorization
procedure. Let us consider the identity

(4.2) A = L+ (A− L) ,

where L is the diagonal and positive matrix obtained from A by the row-sum
technique.

(4.3) Lii =
∑

i

Aii, Lij = 0, j �= i

Since L is diagonal and has positive entries, therefore

(4.4) A = L
1
2 (I +X)L

1
2 ,

where

(4.5) X = L− 1
2 (A− L)L− 1

2 .

Then, under the assumption ‖X‖ ≤ 1, the inverse of A in the form of (4.4) can
be expressed by the following series:

(4.6) A−1 = L− 1
2 (I −X +X2 −X3 + · · · )L− 1

2 .
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Truncating the series after X gives the following two-term approximation of the
inverse of A:

(4.7) A−1(2) = 2L−1

(
I − 1

2
AL−1

)
,

while retaining X2 produces the three-term approximation

(4.8) A−1(3) = 3L−1

(
I −AL−1 +

1
3
AL−1AL−1

)
,

and so on. The successive approximations in the above approximate factorization
technique can be generated by the following multipass algorithm. Consider the
sequence of approximate solutions V (g), g = 0, 1, · · · , G, defined as follows. Start
from V (0) = 0. Then, for g = 0, 1, · · · , G − 1, determine V (g+1) from V (g) by
means of the “diagonal” linear system

(4.9) LV (g+1) = F − (A− L)V (g) .

Finally, assume V = V (G). The approximation of (4.7) and (4.8) can be obtained
by this simple procedure with G = 2 and G = 3, respectively. For G = n we will
call it an n-pass explicit scheme.

5 Theoretical stability of linearized schemes.

We use the notion of asymptotic stability of a numerical method as it is defined
in [4] for a discrete problem of the form

dU

dt
= LU ,

where L is assumed to be a diagonalizable matrix.

Definition: The region of absolute stability of a numerical method is defined
for the scalar model problem

dU

dt
= λU

to be the set of all λ∆t such that ‖Un‖ is bounded as t → ∞. Finally, we say
that a numerical method is asymptotically stable for a particular problem if,
for sufficiently small ∆t > 0, the product of ∆t times every eigenvalue of L lies
within the region of absolute stability.

Forward (Euler) scheme: The region of absolute stability for this scheme is
the circle of radius 1 and center (−1,0).

6 Numerical results and discussions.

In this section we present the results of numerical experiments in which we
compute the approximation to the solutions of the Burgers equation and the
generalized Burgers equation.
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6.1 Burgers equation.

The analytical solution to (3.1) subject to initial condition u0(x) after using
a Cole–Hopf transformation is given by

(6.1) u(x, t) =

∫ ∞
−∞

x−ξ
t exp

[
− (x−ξ)2

4νt

]
exp

[
−(2ν)−1

∫ ξ

0 uo(η)dη
]
dξ

∫ ∞
−∞ exp

[
− (x−ξ)2

4νt

]
exp

[
−(2ν)−1

∫ ξ

0
u0(η)dη

]
dξ

.

We have integrated numerically (6.1) using the Gauss–Hermite quadrature in
order to measure the accuracy of our method.

6.1.1 Case 1.

First, periodic boundary conditions are imposed together with a full sine
wave initial condition (u0(x) = sin(2πx), x ∈ (0, 1)). The resultant solution
is a stationary wave with the buildup of a steep front at the midpoint of the
domain. Figure 6.1 shows the exact solution at various times for the value of
ν = 10−2/π.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.1: Exact solution of the Burgers equation plotted at each .1 time interval,
starting from time t = 0 to 1.2.

Figure 6.2 shows the solution for the scales 4 ≤ j ≤ 9, with a value ν = 10−2/π
of the viscosity. As time evolves, a shock develops, and the solution presents
Gibbs-like oscillations for coarse scales. However, the oscillations are confined
in the neighborhood of the shock. Apart from the shock area, the solution is
correctly represented. This ability of wavelets to confine oscillations only to
the vicinity of the shock has already been observed by [18, 2] in the case of
the Galerkin method. It is a consequence of the good localization of the basis
functions. In the Fourier method, for instance, where the basis functions have
noncompact support, it is well known that oscillations spread in the whole do-
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Figure 6.2: Numerical solution of the Burgers equation at various times and scales (j).
The time step is ∆t = 10−4.

main unless a sufficient number of points are considered to resolve correctly the
sharp gradient in the layer of the shock. The oscillations are due to the fact
that the number of points in the shock layer whose thickness is very small is
not sufficient to resolve correctly the large gradient that occurs here. In order
to better represent the solution in the area of shocks, one needs to add more
points here. One way to do this is to decrease the resolution. With smaller
and smaller scales, one progressively resolves the shock, as can be seen in Fig-
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ure 6.2. With scale j = 7 (i.e., 128 points), for instance, the numerical solution
is smooth almost everywhere except at points immediately before and after the
shocks.

All the results we present are obtained using a Daubechies D6 scaling func-
tion. Here WGM, W-TGM (W-TGM means implicit W-TGM), 3-pass explicit
W-TGM, and W-TGMS were compared. The relative L∞-errors are reported in
Table 6.1. The explicit W-TGM scheme is found to reproduce almost exactly
the results of the implicit scheme till time t = 0.14, except in the case j = 7.
The difference in accuracy between W-TGM (implicit) and W-TGM (explicit) is
more visible after time t = 0.14, especially for the case j = 7. The improvement
of W-TGM methods with respect to the Euler–Galerkin method is apparent for
time t >= 0.26. The reason for not gaining substantial improvement is that the
part of the Burgers equation that plays the dominant role in this example is
the steady-state one, i.e., the right-hand side of (3.3), and it is not modified
by W-TGM. W-TGM (explicit) is seen to be superior to other methods with
increasing t and j.

Table 6.1

j ∆t at time: WGM W-TGM W-TGM(explicit) W-TGMS

4 10−4 t = 0.02 0.0111 0.0111 0.0111 0.0111
t = 0.14 0.1588 0.1588 0.1589 0.1587
t = 0.26 0.6864 0.6856 0.6854 0.6854
t = 0.38 0.6961 0.6955 0.6955 0.6952

5 10−4 t = 0.02 0.0045 0.0045 0.0046 0.0045
t = 0.14 0.0520 0.0523 0.0539 0.0522
t = 0.26 0.4745 0.4737 0.4733 0.4729
t = 0.38 0.3675 0.3676 0.3661 0.3669

6 10−4 t = 0.02 0.0016 0.0016 0.0017 0.0016
t = 0.14 0.0117 0.0117 0.0177 0.0117
t = 0.26 0.2134 0.2127 0.2121 0.2108
t = 0.38 0.1550 0.1550 0.1500 0.1535

7 10−4 t = 0.02 0.0005 0.0005 0.0018 0.0005
t = 0.14 0.0030 0.0030 0.0303 0.0030
t = 0.26 0.0508 0.0503 0.0470 0.0502
t = 0.38 0.0422 0.0422 0.0294 0.0419

For stability analysis we will consider the linearized Burgers equation ∂u
∂t =

ν ∂2u
∂x2 − α∂u

∂x , where the linearization coefficient α stands for the value of u.
Because at the initial time u0(x) = sin(2πx) and because the amplitude of u
decreases with time, we assume throughout that |α| ≤ 1. The region of absolute
stability for this scheme is plotted in Figure 6.3.
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(a) Absolute stability region for for-
ward Euler and ∆t times eigenvalues
of L6.
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(b) ∆t times eigenvalues of L6.

Figure 6.3: Absolute stability region of the Burgers equation for case 1 where ∆t =
10−4, α = 1, and ν = 10−2/π.

6.1.2 Case 2.

In this example we compute the solution of the Burgers equation using the ini-
tial condition u0(x) = sin(2πx)+ 1

2sin(4πx) and a periodic boundary condition,
which leads to the formation of left and right moving shocks. Figure 6.4 shows
the exact solution and Figure 6.5 shows the numerical solution for 4 ≤ j ≤ 7.
Here the difference in accuracy between the W-TGM and W-TGM explicit is
more visible at time t = 0.38. The relative L∞ errors are reported in Table 6.2.
Here also we assume throughout that |α| ≤ 1. The region of absolute stability
for this scheme is plotted in Figure 6.6.
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Figure 6.4: Exact solution of the Burgers equation plotted at each 0.05 time interval,
starting from time t = 0 to 0.5.
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Figure 6.5: Numerical solution of the Burgers equation at various times and scales (j).
The time step is ∆t = 10−4.

6.2 Generalized Burgers equation.

Here we consider the numerical solution of the generalized Burgers equation
(3.8) for constant α, β = 1, and λ = −1 and consider the evolution of a Gaussian
initial condition centered on the interval 0 ≤ x ≤ 1, e.g., u(x, 0) = e−(σ(x− 1

2 ))2

and periodic boundary conditions u(x, 0) = u(x, 1). Figure 6.7 illustrates the
solution using a W-TGM scheme for the scale j = 6, and the region of absolute
stability is plotted in Figure 6.8.

7 Conclusion.

In this work a space and time accurate scheme called the wavelet- Taylor
Galerkin method (W-TGM) for the Burgers equation is introduced. W-TGM
appears to be fundamentally implicit, thereby demanding matrix inversion at
each time marching step. To avoid this time-consuming step, explicit schemes
based on approximate factorization is employed in solving the linear systems. The
solution by these easy-to-implement and computationally economical explicit
schemes is found to be quite close to the solution obtained by matrix inversion.
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Table 6.2

j ∆t at time: WGM W-TGM W-TGM(explicit) W-TGMS

4 10−4 t = 0.02 0.0248 0.0248 0.0249 0.0248
t = 0.14 0.1704 0.1692 0.1691 0.1691
t = 0.26 0.2641 0.2626 0.2631 0.2625
t = 0.38 0.9199 0.9183 0.9170 0.9180

5 10−4 t = 0.02 0.0097 0.0096 0.0099 0.0096
t = 0.14 0.0669 0.0650 0.0650 0.0650
t = 0.26 0.2596 0.2567 0.2560 0.2563
t = 0.38 0.5525 0.5532 0.5502 0.5522

6 10−4 t = 0.02 0.0032 0.0031 0.0036 0.0031
t = 0.14 0.0176 0.0163 0.0248 0.0164
t = 0.26 0.1348 0.1319 0.1681 0.1313
t = 0.38 0.2898 0.2899 0.2813 0.2878

7 10−4 t = 0.02 0.0009 0.0009 0.0018 0.0009
t = 0.14 0.0048 0.0048 0.0039 0.0047
t = 0.26 0.1537 0.1513 0.3434 0.1508
t = 0.38 0.0872 0.0873 0.0647 0.0874
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(a) Absolute stability region for for-
ward Euler and ∆t times eigenvalues
of L6.
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(b) ∆t times eigenvalues of L6.

Figure 6.6: Absolute stability region of the Burgers equation for case 2 where ∆t =
10−4, α = 1, and ν = 10−2/π.

The wavelet-Taylor Galerkin splitting-up method (W-TGMS) for the Burgers
equation works well and produces results nearly as accurate as W-TGM and
W-TGM (explicit). The study motivates further research in developing W-TGM-
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Figure 6.7: Solution at various time steps for D = 6, where ∆t = 0.005 and ν = 0.005.
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Figure 6.8: Absolute stability region for forward Euler and ∆t times the eigenvalues of
L6 for D = 6, where ∆t = 0.005, α = 1, and ν = 0.005.

based space–time-accurate schemes for multidimensional nonlinear systems like
Navier–Stokes equations.
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