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a b s t r a c t

A fast adaptive diffusion wavelet method is developed for solving the Burger’s equation.
The diffusion wavelet is developed in 2006 (Coifman and Maggioni, 2006) and its most
important feature is that it can be constructed on any kind ofmanifold. Classes of operators
which can be used for construction of the diffusion wavelet include second order finite
difference differentiation matrices. The efficiency of the method is that the same operator
is used for the construction of the diffusion wavelet as well as for the discretization of the
differential operator involved in the Burger’s equation. The diffusionwavelet is used for the
construction of an adaptive grid as well as for the fast computation of the dyadic powers
of the finite difference matrices involved in the numerical solution of Burger’s equation. In
this paper, we have considered one dimensional and two dimensional Burger’s equation
with Dirichlet and periodic boundary conditions. For each test problem the CPU time taken
by fast adaptive diffusion wavelet method is compared with the CPU time taken by finite
differencemethod and observed that the proposedmethod takes lesser CPU time.We have
also verified the convergence of the given method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Burger’s equation models the situations where both typical non-linearity and diffusion occur [1–4]. The equation is
intensively used to test the numerical schemes. Various numerical methods have been developed for solving Burger’s
equation, for example finite element schemes in [5], finite difference schemes in [6], spectralmethods in [7,8] anddistributed
functional approaches in [9,10].

While solving a partial differential equation (PDE) numerically, using an adaptive grid [11–13] has obvious advantages
over using a static grid.Wavelets arewidely used for numerical solutions of PDEs (and in particular the Burger’s equation) on
adaptive grids. In [14] one dimensional Burger’s equation with periodic boundary conditions is solved on a static grid using
Daubechies wavelet and in [15] it is solved using quasi wavelets [16]. An adaptive grid is generated using spline wavelets
to solve one-dimensional Burger’s equation with periodic boundary conditions in [17]. In [18] second generation wavelet is
used to solve one dimensional Burger’s equation on an adaptive grid. But the wavelet theory for numerical solution of PDEs
on general manifold is a relatively new field, although there are many non wavelet numerical techniques available [19–22].
One of the work done in this direction is a dynamic adaptive numerical method for solving PDEs on the sphere using second
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generation spherical wavelet [23]. Fast adaptive diffusion wavelet method (FADWM) developed in this paper can be seen as
a first step in this direction.

The diffusion wavelet is introduced by Coifman and his collaborators in 2006 [24]. The most important feature of the
diffusion wavelet is that it can be constructed on general manifolds. This wavelet has not been used for numerical solutions
of PDEs and to best of our knowledge ours is the first attempt. In FADWM, diffusion wavelet is used for making an adaptive
grid and for the fast computation of the dyadic powers of the finite difference matrices involved in the numerical solution
of the Burger’s equation.

The paper is organized as follows: Section 2 gives a brief description of the diffusion wavelet. FADWM is developed in
Section 3. Section 4 contains the numerical results. Section 5 concludes the paper and gives a brief idea of the future work.

2. A brief description of diffusion wavelet

Diffusion wavelet [24] is constructed on any general manifold X . Multiresolution analysis (MRA) is built using a diffusion
operator T onL2(X)which is local, self adjoint andwhose high powers have low numerical rank. For example I−T with I as
an identity operator onL2(X) could be the Laplace–Beltrami operator. For any f ∈ L2(X)we have PV j f (x) =


k∈X j c jkφ

j
k(x).

Computing the scaling function coefficients {c jk}k∈X j using the values of {f (xk)}xk∈X j is called diffusion scaling function
transform (DST). Computing the function f from the coefficients {c jk}k∈X j is called the inverse diffusion scaling function
transform (IDST).

For any function f ∈ L2(X), PV j f = PV j−1 f + PW j−1 f . So we can write (PV j f )(x) =


k∈X j−1 c j−1
k φ

j−1
k (x) +


k∈Y j−1

dj−1
k ψ

j−1
k (x), where Y j−1 is the index set. Given the set cj, computing the sets cj−1

= {c j−1
k }k∈X j−1 and dj−1

= {dj−1
k }k∈Y j−1 is

termed as partial diffusion wavelet transform (PDWT). Now for the coarsest level J0 and the finest level J , we can decompose
the space V J as V J

= V J0
J−1

j=J0
W j. Therefore

(PVJ f )(x) =


k∈X J0

c J0k φ
J0
k (x)+

J−1
j=J0


k∈Y j

djkψ
j
k(x). (1)

PDWT can be applied on cj for j = J, J − 1, . . . , J0 + 1 to obtain the full diffusion wavelet transform (FDWT) which will
give all the coefficients in (1). Constructing the set cj from the sets cj−1 and dj−1 is called inverse partial diffusion wavelet
transform (IPDWT). Inverse full diffusion wavelet transform (IFDWT) is obtained by applying IPDWT recursively. For details
one can see [24].

3. Fast adaptive diffusion wavelet method (FADWM)

3.1. Efficient computation of {T 2m ,m > 0}

Suppose that we are given a function f ∈ L2(X) and we want to compute T 2m f ≈ [T 2m
]
Φ J

Φ J f. Using [T 2m
]
Φ J−m

Φ J =

[T 2m−1
]
Φ J−m

Φ J−(m−1) [T 2m−2
]
Φ J−(m−1)

Φ J−(m−2) · · · [T ]
Φ J−1

Φ J [T ]
Φ J

Φ J , we can compute [T 2m
]
Φ J−m

Φ J f which is the vector of coordinates of [T 2m
]
Φ J

Φ J f
in the basis Φ J−m of V J−m, i.e., cJ−m. From cJ−m we can compute cJ using IDST. cJ is nothing but the vector of coefficients of
[T 2m

]
Φ J

Φ J f in the basisΦ J which is [T 2m
]
Φ J

Φ J f itself. Algorithm to compute [T 2m
]
Φ J

Φ J f is:

T 2m f ≈ cJ = ALGORITHM(T , f , m)
1) g = [T ]

Φ J

Φ J f.

2)
For k = 0, 1, . . .m − 1
g = [T 2k

]
Φ J−(k+1)

Φ J−k g
end

 This gives us cJ−m.

3) cJ−m IDST
−−→ cJ .

4) cJ = [T 2m
]
Φ J

Φ J f.

We took f (x) = x and computed [T 212
]
Φ8

Φ8 f (T is the diffusion operator constructed using the construction of [25]) both

analytically (the matrix [T ]
Φ8

Φ8 is multiplied 212 times and finally with f) and using the above algorithm. The errors in l2 and

l∞ norms are 2.393 × 10−9 and 1.563 × 10−10 respectively. The CPU time taken for computing [T 212
]
Φ8

Φ8 f using the above
algorithm is 2% of the CPU time taken for its analytic computation.
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Fig. 1. Variation of N(ϵ) vs. j and position of the grid points with |djk| ≥ ϵ.

Fig. 2. Position of the grid points with |djk| ≥ ϵ for f (x, y) = exp(−1000(x2 + y2)) and f (x, y) = exp(−50(x + 1)2)+ exp(−50(y + 1)2).

3.2. Adaptive grid

The property of wavelet that the wavelet coefficients djk have largemagnitude only near the point of discontinuity makes
it suitable to detect where in the numerical solution of a PDE the shocks are located and hence an adaptive grid can be
generated. For any f (x) ∈ L2(X) and a given threshold ϵ, (1) can be written as PVJ f (x) = f≥ϵ(x)+ f<ϵ(x), where

f≥ϵ(x) =


k∈X J0

c J0k φ
J0
k (x)+

J−1
j=J0


|djk|≥ϵ

djkψ
j
k(x) and f<ϵ(x) =

J−1
j=J0


|djk|<ϵ

djkψ
j
k(x).

The number of significant coefficients N(ϵ) is defined as N(ϵ) = #X J0 +
J−1

j=J0
#{djk|k ∈ Y j and |djk| ≥ ϵ}. ∥f − f≥ϵ∥p is called

the compression error and Donoho in [26] proved that for sufficiently smooth f

∥f − f≥ϵ∥∞ < Cϵ, (2)

where C is a constant. For the sawtooth function on [0, 1] with discontinuity at x = 0.5, Fig. 1 shows the variation
of N(ϵ) vs. j for different values of ϵ and the positions of the grid points where djk ≥ 10−2. In two-dimensional case
Fig. 2 shows the position of the grid points with |djk| ≥ ϵ = 10−2 for f (x, y) = exp(−1000(x2 + y2)) and f (x, y) =

exp(−50(x + 1)2) + exp(−50(y + 1)2). Now, we demonstrate the construction of the adaptive grid. Suppose that X c is
the current coarse grid and {f (xj)}j∈Xc is known. Use interpolation to compute {f (xj)}j∈X J from {f (xj)}j∈Xc . Apply FDWT on
this expanded f (x) to obtain the diffusion scaling and wavelet coefficients. In the process of generating the new coarse
grid X c from the finest grid X J , all the points corresponding to the diffusion scaling functions will be kept intact. A point
corresponding to an active diffusion wavelet i.e. the point where |djk| ≥ ϵ is kept intact.

It is important to note that while solving a PDE, we will not adapt the grid at each time step. To ensure the accuracy,
the grid points corresponding to the diffusion wavelets which can possibly become significant during the period of the time
when the grid remains unchanged should also be included. Thus if xl is the point in the finest grid X J corresponding to
active diffusion wavelet (call it an active grid point), then xl as well as the points xm such that |m − l| ≤ L (for some fixed
positive integer L) are included in the new coarse grid X c . The diffusion wavelet ψ j

m is said to be in the adjacent zone of ψ j
l

if |m − l| ≤ L. Figs. 3 and 4 explain the construction of the adaptive grid in one and two dimensional cases respectively.
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Fig. 3. Generating the adaptive grid in one-dimensional case.

Fig. 4. Generating the adaptive grid in two-dimensional case.

Fig. 5. The adaptive grid for (a) Sawtooth function with discontinuity at x = 0.5 (b) Sawtooth function with discontinuity at x = 0.8 (c) f (x) =

sin(2πx)+ exp(−104(x − 0.5)2).

For ϵ = 10−2, L = 2 and λ = 7, Fig. 5 shows the adaptive grid created using the above explained technique for different
functions.

3.3. FADWM for non-linear PDEs

To demonstrate FADWMwe will consider the second-order PDE of the type

∂u
∂t

= F

u, x, t,

∂u
∂x
,
∂2u
∂x2


, t ≥ 0, x ∈ [0, 1], (3)

with u(x, 0) = u0(x) and with suitable boundary conditions. F is a non-linear operator. For discretization of (3) we use
Lagrange interpolating polynomial through p points uI(x) =

i+w
k=i−w u(xk)

Pw,i,k(x)
Pw,i,k(xk)

, w =
(p−1)

2 , Pw,i,k =
i+w

l=i−w
l≠k

(x − xl). For

sufficiently smooth u, we have the estimate
 dd

dxd
uI(xk)−

dd

dxd
u(xk)

 = O(hp−1), d = 1, 2, where h = max{hi = xi − xi−1}.
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Table 1
Grid modifications while solving test problem 1 for different ν.

Time (t) ν = 0.005 ν = 0.01 ν = 0.05
N(ϵ = 0) N(ϵ) N(ϵ = 0) N(ϵ) N(ϵ = 0) N(ϵ)

0 512 122 512 393 512 502
0.0625 122 141 393 395 502 496
0.1250 141 134 395 391 496 494
0.1875 134 125 391 393 494 497
0.25 125 133 393 398 497 494
0.3125 133 128 398 399 494 494
0.3750 128 128 399 398 494 490
0.4375 128 129 398 394 490 491

With this space discretizationwe get d
dt u(t) = Lu(t)+N(u(t)), where Lu(t) andN(u(t)) represent the linear and non-linear

part respectively. Now using Crank Nicolson scheme for discretization in time [27], we get

un
= A−1 

Bun−1
+ f(un,un−1)


, u0

= u0, (4)

where A = I− ∆t
2 L, B = I+ ∆t

2 L, and f(un,un−1) = N


un+un−1

2


. An iterative process is required to solve (4), i.e.,un

(0) = un−1,

and iterate until the required convergence, i.e., un
(q+1) = A−1


Bun−1

+ f(un
(q),u

n−1)

, q = 0, 1, . . . . Thematrix A is of the

form A = I − T , where T is suitable for the construction of the diffusion wavelet. After constructing the diffusion wavelet
using the operator T , we can efficiently compute the dyadic powers of T as explained in Section 3.1. Hence A−1 can be
computed as follows:

A−1
= (I − T )−1

=

∞
k=0

T k
= lim

K→∞

K
k=0

(I + T 2k). (5)

The same diffusion wavelet is used for generating an adaptive grid. Hence in FADWM we will use the diffusion wavelet for
two purposes, one for the fast computation of A−1 and second for making the adaptive grid. The algorithm for FADWM is as
follows:

Construct the new coarse grid using un−1.
Compute the matrices A and B for the new coarse grid.
Compute A−1 using (5).
Compute un using (4) on the new coarse grid.
Perform several time steps on the new coarse grid.

Any type of boundary conditions can be dealt with this method because of the following reasons: (1) if we are solving
PDE on the domain Ω ∈ Rn, then the diffusion wavelet is constructed for the space L2(Ω) and not for L2(Rn); (2) in
FADWM the Neumann and periodic boundary conditions will be incorporated in the operator T and Dirichlet’s boundary
conditions will be incorporated in the right hand side vector f. It should be noted that the order of accuracy of the proposed
method before introducing adaptivity is O(N−(p−1)

+ ∆t2) (in numerical experiments we have used p = 3). As clear from
(2), for a threshold ϵ, the error introduced during adaptivity is O(ϵ). Therefore, the order of accuracy of the final scheme is
O((N(ϵ))−(p−1)

+∆t2 + ϵ).

4. Numerical results

FADWM is used to solve three test problems. In the first two test problems (3) is considered with F(u, x, t, ∂u
∂x ,

∂2u
∂x2
) =

−u ∂u
∂x + ν ∂

2u
∂x2

and ν = 0.005. Third test problem is a two-dimensional coupled Burger’s equation.

Test problem 1: the initial condition is u0(x) = sin(2πx) and the boundary condition is periodic, i.e., u(x, t) = u(x + 1, t).
The analytic solution [3] of this problem is a stationarywavewhich develops a steep gradient at x = 0.5.We used FADWM to
solve this PDE. Table 1 shows the grid modifications at different times for different values of ν. It is clear from the table that
N(ϵ) decreases with the decrease in the value of ν and hence the method performs better for low values of ν. Fig. 6 shows
the solution and the corresponding adaptive grid at different times. Fig. 7 shows the point wise error at different times and
it is observed that the error is maximum near the variation in the solution as expected. Hence more points will be added in
this area and it will lead to an automatic adaptive grid generation. Fig. 8(a), (b) verifies the convergence of the method with
respect to N(ϵ) and the threshold ϵ respectively (note that unum stands for the numerical solution computed using FADWM
and uana stands for the analytic solution of the problem). From these graphs it can be observed that the expected order of
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Fig. 6. Solution and the corresponding adaptive grid at t = 0, 0.25, 0.5.

Fig. 7. Point wise error at t = 0.25, 0.5.

(a) ∥unum − uana∥2 vs. N(ϵ). (b) ∥unum − uana∥2 vs. ϵ. (c)Θ vs. ν.

Fig. 8. Results for test problem 1.

Table 2
The performance of FADWM for test problem 1.

ϵ 10−1 10−2 10−3 10−4

CPU(ϵ) 0.1 0.1 0.35 0.42
Θ 7 7 2 1.667

convergence has been achieved. It is clear that error will decrease with the decrease in value of ϵ but the computational
cost will increase. Therefore ϵ is to be chosen wisely which makes a balance between the error and the computational
cost. In order to observe the efficiency of FADWM the CPU time taken by the FADWM (we will call it CPU(ϵ)) is compared
with the CPU time taken by the finite difference method without adaptivity and without fast computation of powers of the
finite difference matrices (we will call it CPU(ϵ = 0)). For its measurement we define the time compression coefficient as
Θ =

CPU(ϵ=0)
CPU(ϵ) . The larger the value ofΘ , the more efficient is the adaptive algorithm. Table 2 gives variation of CPU(ϵ) with

ϵ for ν = 0.005 (CPU(ϵ = 0) = 0.7). It should be noted that for ϵ = 10−1 and ϵ = 10−2 the value of Θ is same. But for
ϵ = 10−2, the error will be less, so one should use ϵ = 10−2. Fig. 8(c) shows the variation of Θ as a function of ν. It can be
observed that lower is the value of ν, higher is the value ofΘ , i.e., the method performs better for lower values of ν.
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Table 3
Grid modifications while solving test problem 2.

Time (t) 0 0.0625 0.1250 0.1875 0.25 0.3125 0.3750 0.4375
N(ϵ = 0) 512 33 33 38 48 58 57 52
N(ϵ) 33 33 38 48 58 57 52 60

Table 4
The performance of FADWM for test problem 2.

ϵ 10−1 10−2 10−3 10−4

CPU(ϵ) 0.1 0.2 0.22 0.24
Θ 4 2 1.8182 1.6667

Fig. 9. Solution and the corresponding adaptive grid modification at t = 0, 0.25, 0.5.

Fig. 10. ∥unum − uana∥2 vs. N(ϵ) and ϵ.

Test problem 2: consider the initial condition u0(x) = sin(πx) and homogeneous Dirichlet’s conditions u(0, t) =

u(1, t) = 0. Table 3 shows the gridmodifications at different times. Fig. 9 shows the solution and the corresponding adaptive
grid at different times. Fig. 10 verifies the convergence of the method with respect to N(ϵ) and ϵ. Table 4 shows values ofΘ
for different values of ϵ (CPU(ϵ = 0) = 0.4).

This test problem is solved by Zhang et al. in [9] using a scheme based on properties of distributed approximating
functional. We have compared our results with their results (shown in Table 5). It can be observed from the table that
the maximum absolute errors with Zhang et al. and FADWM are almost same. The number of grid points used in DAF for
Re = 10 is 10 and for Re = 100, it is 25. Whereas in the case of FADWM average number of grid points for Re = 100 is 40
and for Re = 10 it is 50, i.e., FADWM is more efficient for high Reynold’s number (it was expected as clear from Table 1).

Test problem 3: we consider the two-dimensional coupled non-linear Burger’s equation defined as

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

−
1
Re


∂2u
∂x2

+
∂2u
∂y2


= 0, (6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
−

1
Re


∂2v

∂x2
+
∂2v

∂y2


= 0, 0 ≤ x, y ≤ 1, (7)
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Table 5
Comparison between Zhang et al. and FADWM.

Time ∥unum − uana∥∞

Re = 10 Re = 100
Zhang et al. FADWM Zhang et al. FADWM

t = 0.05 6.14 × 10−4 8.22 × 10−4 3.22 × 10−3 2.05× 10−3

t = 0.25 7.63 × 10−4 6.12 × 10−4 5.98 × 10−3 7.31× 10−3

t = 0.75 1.66 × 10−4 5.07 × 10−4 1.29 × 10−3 6.00× 10−3

t = 1.50 7.70 × 10−5 8.50 × 10−4 2.57 × 10−5 5.90× 10−4

Table 6
Grid modifications while solving two dimensional Burger’s equation.

time(t) 0 0.10 0.20 0.30 0.40 0.50 0.60
N(ϵ = 0) 400 44 74 82 77 72 64
N(ϵ) 142 63 77 79 76 69 58

Table 7
The performance of FADWM in the case of two dimensional Burger’s equation.

ϵ 10−1 10−2 10−3 10−4

CPU(ϵ) 0.35 0.75 1.375 1.625
Θ 7.1429 3.3333 1.8182 1.5385

subject to suitable initial and boundary conditions [28]. u(x, y, t) and v(x, y, t) are the velocity components along x-axis and
y-axis respectively, Re is the Reynold’s number. After discretization we have

ux = D(1)
x u(t)+ au, uy = D(1)

y u(t)+ bu, uxx = D(2)
x u(t)+ cu, uyy = D(2)

y u(t)+ du. (8)

Use (8) to discretize (6)

d
dt

u(t)− Nx(u(t))u(t)− Ny(u(t))v(t)−
1
Re


D(2)

x + D(2)
y


u(t)

+ (diag(au)+ diag(cu)+ diag(du))u(t)+ (diag(bu))v(t) = 0, (9)

where Nx(u(t)) = −diag(D(1)
x u(t)), and diag(a) denotes a matrix with the vector a as its diagonal. Let us call

Au = (diag(au)+ diag(cu)+ diag(du)) , Bu = diag(bu), L =
1
Re


D(2)

x + D(2)
y


,

so that (9) can be written as

d
dt

u(t)+ (−Nx(u(t))+ Au)u(t)+

−Ny(u(t))+ Bu


v(t)− L(u(t)) = 0. (10)

Now applying Crank Nicolson on (10), we get

un
=A−1

u


Buun−1

+∆tNx


un

+ un−1

2

 
un

+ un−1

2


+∆tNy


un

+ un−1

2

 
vn + vn−1

2


+∆tBu


vn + vn−1

2


,

(11)

where

Au = I +∆t
Au

2
−∆t

L
2
, Bu = I −∆t

Au

2
+∆t

L
2
.

On similar lines we can obtain an equation for vn. Table 6 shows the grid modifications at different times. Fig. 11 shows the
solution and the corresponding adaptive grid at different times. Fig. 12 shows u(x, y = 0.5, t), v(x, y = 0.5, t) at different
times and the corresponding adaptive grid. Fig. 13 verifies the convergence of the method with respect to N(ϵ) and the
threshold ϵ. Table 7 shows values of CPU(ϵ) for different values of ϵ for the case of two dimensional Burger’s equation,
CPU(ϵ = 0) = 2.5. In order to compare our results with the results of Wei et al. in [10], we have solved (6) and (7) with the
initial conditions u(x, y, 0) = sin(πx) sin(πy), v(x, y, 0) = (sin(πx) + sin(2πx))(sin(πy) + sin(2πy)) and homogeneous
boundary condition for both variables. We used Re = 1, 100 and computed the solution at t = 0.01. The number of grid
points used by FADWM are 52 for Re = 1 and 36 for Re = 100, which again shows that the method performs for high
Reynold’s number. Our results are quite in agreement with the results of Wei et al. (see Table 8).
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Fig. 11. Solution and the corresponding adaptive grid at t = 0, 0.5, 1.

Fig. 12. u(x, y = 0.5, t), v(x, y = 0.5, t) and the corresponding adaptive grid.

Table 8
Comparison of FADWMwith results of Wei et al. [10].

(x, y) (0.1, 0.1) (0.2, 0.8) (0.4, 0.4) (0.7, 0.1) (0.9, 0.9)

Wei et al.
(∆x = ∆y =

1
20 ) u = 0.07250 u = 0.27758 u = 0.72169 u = 0.20478 u = 0.07946

(∆t =
1

2000 ) v = 0.43116 v = −0.12436 v = 1.65256 v = 0.06681 v = 0.01342

FADWM
(N(ϵ) = 52) u = 0.07231 u = 0.27757 u = 0.72156 u = 0.20253 u = 0.07939

(∆t =
1

2000 ) v = 0.43091 v = −0.12447 v = 1.65321 v = 0.06672 v = 0.01341
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Fig. 13. ∥unum − uana∥2 , ∥vnum − vana∥2 vs. N(ϵ) and ϵ.

5. Conclusion and future work

In this paper, FADWM is developed for the numerical solution of Burger’s equation. The diffusion operator obtained
by discretizing the Burger’s equation is used for the construction of diffusion wavelet. The diffusion wavelet is used for
constructing an adaptive grid as well as for the fast computation of the powers of the finite difference matrices involved in
the computation of the numerical solution. The efficiency and convergence of FADWM are verified for all the test problems.
The CPU time taken by the FADWM is comparedwith the CPU time taken by the finite differencemethod and it turns out that
FADWM is performing much better. To the best of our knowledge, useful properties of diffusion wavelet constructed in [24]
are for the first time exploited for generating the adaptive grid. In future we will use FADWM for turbulence modelling and
generalize it to general manifolds.
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