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Time-accurate solution of advection–di�usion problems by
wavelet-Taylor–Galerkin method

Mani Mehra‡ and B. V. Rathish Kumar∗;†

Department of Mathematics; Indian Institute of Technology Kanpur; Kanpur 208 016; India

SUMMARY

In this paper we propose a wavelet Taylor–Galerkin method for the numerical solution of time-dependent
advection–di�usion problems. The discretization in time is performed before the spatial discretization
by introducing second- and third-order accurate generalization of the standard time stepping schemes
with the help of Taylor series expansions in time step. Numerical schemes taking advantage of the
wavelet bases capabilities to compress both functions and operators are presented. Numerical examples
demonstrate the e�ciency of our approach. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: Taylor–Galerkin method; wavelets; time marching scheme

1. INTRODUCTION

The application of methods based on wavelets to the numerical solution of partial di�erential
equations (PDEs) has recently been studied both from the theoretical and the computational
point of view due to its attractive feature: orthogonality, arbitrary regularity, good localization.
Wavelet bases seem to combine the advantages of both spectral and �nite element basis.
Schematically the wavelet based methods for PDEs can be separated into three classes.
In a �rst class, wavelets are used, in the framework of a classical grid adaptive numerical

code, to detect where the grid has to be re�ned or coarsed to optimally represent the solution.
Instead of expanding the solution in terms of wavelets, the wavelet transform is used to
determine the adaptive grid [1].
In a second class multiresolution analysis and their associated scale function bases may be

used as alternative bases in Galerkin methods [2–4]. Such methods have thus convergence
properties similar to the ones of spectral methods, and simultaneously partial derivative oper-
ators discretize similarly as in �nite di�erence (FD) methods. However, as these methods do
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not use wavelets but rather scale function as basis functions, they cannot be adaptive methods
and cannot reduce signi�cantly the number of degree of freedom in a numerical code.
The third class, the only one which uses the compression properties of wavelet bases,

contain speci�c wavelet methods for PDEs. In the literature, many tentatives have been per-
formed, often based on Galerkin or Petrov–Galerkin methods. Some of them take advantage of
the wavelet compression of the solution [5], this useful property also leads to the concept
of adaptivity where the necessary information about how and where to spend the degrees
of freedom has to be acquired during the solution process. Adaptive numerical concept for
solving a wide class of variational problems have been recently studied in References [6–9].
Others use instead the wavelet compression of the operator [10]. The aim of the present
paper is to introduce the wavelet-Taylor–Galerkin method (W-TGM) which has the bene�t
of both these two properties. The fundamental concept behind the Taylor–Galerkin approach
[11, 12] is to incorporate more analytical information into the numerical scheme in the most
direct and natural way, so that the technique may be regarded as an extension to PDEs of
the Obrechko� methods [13] for ordinary di�erential equations. Time accurate solution of
Korteweg-de Vries equation using wavelet Galerkin method (WGM) is also developed in
Reference [14] and wavelet multilayer Taylor–Galerkin schemes for hyperbolic and parabolic
problems are introduced in Reference [15].
In this paper higher order accurate versions of the Crank–Nicolsan (CN) time stepping

algorithms are developed on the basis of Taylor series expansion where the time derivatives
are evaluated from the governing equation and where we are taking the advantage of sparsity
of matrices which are coming in evolutionary problems. It can be generalized to any time
stepping scheme based on Taylor series expansion. Our W-TGM is based on fast algorithms
like matrix vector product in wavelet bases and wavelet compression property of smooth data.
Spatial approximation can be made by using di�erent wavelet basis such as orthogonal

Daubechies wavelets [16], biorthogonal spline wavelets [17], interpolats [18], etc. Our method
works with any of these basis functions. In this paper we demonstrate our method using
Daubechies compactly supported wavelets.

2. W-TGM FOR EVOLUTIONARY PROBLEMS

In the following, we give a brief introduction to wavelets and our notation used. We �rst deal
with one-dimensional wavelets and then consider two variants for its generalization to the
multivariate case. Finally, we describe how compression properties of wavelets can be used
in W-TGM scheme for advection–di�usion problem in one dimension and hill translating, hill
rotating around the origin in two dimension.

2.1. Univariate wavelets

The class of compactly supported wavelet bases was introduced by Daubechies in 1988. They
are an orthonormal bases for functions in L2(R). A ‘wavelet system’ consists of the function
�(x) and the function  (x) referred to as wavelet function. We de�ne translates of �(x) as

�i(x)=�(x − i) (1)
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Multiresolution analysis (MRA) is the theory that was used by Ingrid Daubechies to show that
for any non-negative integer n there exists an orthogonal wavelet with compact support such
that all the derivatives up to order n exist. MRA describes a sequence of nested approximation
spaces Vj in L2(R) such that closure of their union equals L2(R). MRA is characterized by
the following axioms:

{0} ⊂ · · · ⊂V−1 ⊂V0 ⊂V1 · · · ⊂L2(R)

j=∞⋃
j=−∞

Vj=L2(R)

⋂
j∈Z

Vj=0

f∈Vj if and only if f(2(:)) ∈Vj+1

�(x − k)k∈Z is an orthonormal basis for V0

(2)

We de�ne Wj to be the orthogonal complement of Vj in Vj+1, i.e. Vj ⊥Wj and

Vj+1 =Vj +Wj (3)

�j; k(x)=2j=2�(2jx−k)k∈Z is an orthonormal basis for Vj and � is the solution of the so-called
scaling equation

�(x)=
√
2

D−1∑
k=0

ak�(2x − k) (4)

with explicitly known coe�cients ak (low pass �lter). An analytical description of � is not
available, but it is also not needed. Wavelets are also dilates=translates of a single function  
such that  j; k =2j=2 (2jx−k)k∈Z is an orthonormal basis for Wj. Each member of the wavelet
family is determined by the dilation equation

 (x)=
√
2

D−1∑
k=0

bk�(2x − k) (5)

where D is the order of wavelet and bk =(−1)kaD−1−k ; k=0; 1; : : : ; D− 1. As pointed out by
Meyer (1990) the complete toll box built in L2(R) can be used in the periodic case L2([0; 1])
by introducing a standard periodization technique. This technique consists at each scale in
folding, around the integer values, the wavelet  j; k and the scaling functions �j; k centred in
[0; 1]. It writes �̃j; l(x)=

∑∞
n=−∞ �j; l(x+n) and  ̃ j; l(x)=

∑∞
n=−∞  j; l(x+n) and generates VPj

and WPj. A function f∈VPj in pure periodic scaling function expansion f(x)=
∑2j−1

k=0 cj
k�̃j; k(x)

and the periodic wavelet expansion f(x)=
∑2J0−1

k=0 cJ0k �̃J0 ; k(x) +
∑J−1

j=J0

∑2j−1
k=0 dj

k  ̃ j; k(x), where
J0 satisfy 06J06J and the decay of the wavelet coe�cient is given by the following
theorem [19].

Theorem
Let P=D=2 be the number of vanishing moments for a wavelet  j; k and let f∈CP(R). Then
the wavelet coe�cients decay as |dj; k |6CP2−j(P+1=2) max�∈Ij; k |f(P)(�)|.
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2.2. Time dependent advection–di�usion problem

Consider the linear advection–di�usion equation

@tu=−a@xu+ �@2xu (6)

where a and �¿0 are positive constant coe�cients.

2.2.1. Time discretization. We have used second-order W-TGM because too many terms are
introduced in the third-order time derivative term, especially for non-linear problems. This
di�culty may be circumvented by the use of a splitting-up method in which the advection–
di�usion problem is decomposed into a pure advection problem followed by a pure di�usion
problem, where the advection phase may be treated by third-order W-TGM. Let us leave the
spatial variable x continuous and discretize (6) in time by the following forward Taylor series
expansion. To obtain an improved order of accuracy in �t we shall apply a Taylor–Galerkin
method based on the following Taylor series expansions:

un+1 = un + �tun
t +

�t2

2
un
tt + · · · (7)

un = un+1 − �tun+1
t +

�t2

2
un+1
tt + · · · (8)

Combination of these two gives

un+1 − un

�t
=
1
2
(un

t + un+1
t ) +

�t
4
(un

tt − un+1
tt ) (9)

replacing the time derivatives by spatial derivatives, the associated wavelet-Taylor–Galerkin
equations based on CN time stepping scheme are which includes �rst- and second-order time
derivatives. while the former is provided directly by (6), the latter can be obtained by taking
the time derivative of the governing PDEs. The time derivative of (6) is

utt =−a2@2xu − 2a�@3xu+ �2@4xu (10)

and the substitution of (6) and (10) into the Taylor series expansion (9) gives W-TGM
scheme

Aun+1 =Bun (11)

where A= I − �t=2(−a@x+ �@2x)+ �t2=4(−a2@2x − 2a�@3x + �2@4x) and B= I + �t=2(−a@x+ �@2x)+
�t2=4(−a2@2x − 2a�@3x + �2@4x). Now wavelet Galerkin discretization turns the problem into a
�nite dimensional space

dn+1
u =A−1Bdn

u=Ddn
u (12)

In this �nite dimensional space un is to be replaced by the vector dn
u along a wavelet �nite

basis, and A and B are replaced by A and B (�nite) matrices, respectively. Due to second-
and third-order term in Taylor series our scheme leads to implicit method that needs inversion.
Now to solve Equation (11) in wavelet basis we will compute A−1 and A−1B once and
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Figure 1. Number of coe�cients in the successive powers Dn: (a) CN times stepping in wavelets and
in �nite di�erence, versus x=2n, n=15, N =1024, ��t=10−5, �M =10−8; and (b) Taylor–Galerkin

approach in wavelets and in �nite di�erences.

store in compressed form. We can now give a computational procedure for computing (11)
using wavelet compression.

Algorithm

1. trunc(A−1; �M )7 (A−1)�M ,
2. compute initial guess in wavelet basis 7d0u,
3. trunc(d0u; �V )7 (d0u)

�V

for n=0; 1; : : : ; n1− 1,
4. (A−1)�MB(dn

u)
�V 7dn+1

u ,
5. trunc(dn+1

u ; �V )7 (dn+1
u )�V ,

where trunc(du; �V )= {dj
k ; |dj

k |¿�V} and trunc(A; �M )= {[Am;n] [Am;n]¿�M}.
A further property of the wavelet representation of operators is that the successive powers

Dn of the time iteration matrix become sparser and sparser with increasing n. This property
is very speci�c to wavelets, as the opposite occurs with �nite di�erence where Dn becomes a
more and more dense matrix as shown in Figure 1. It is seen from 1 that in wavelet-Taylor–
Galerkin approach compression in the matrix Dn is larger than wavelet Galerkin approach.
From this property we can obtain iterative speed of the wavelet-Taylor–Galerkin scheme.

1. Initialize (A−1
0 )�M and (d0u)

�V ,
2. (D0)�M 7 (A−1

0 )�MB
for n=0; 1; : : : ; n1− 1,

3. (Dn)�M (dn
u)

�V 7 (dn+1
u )�V ,

4. D2
n7Dn+1. Then the approximate solution of PDE is at t=2n�t is d(2

n)
u .

Since di�erential operators are local operators, it seems that not much can be gained by
compression. But in wavelet basis it is possible to e�ciently invert the di�erential operator
and then approximate (in a compressed form) the dense evolution operators. There is no need
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to change from classical to wavelet co-ordinates till some time steps. In classical co-ordinate,
the evolution operator changes from very sparse to dense. In the wavelet representation we
may start the squaring in the classical co-ordinates and change to the wavelet basis at the
point where the wavelet representation is sparser. Thus, we have the following algorithm:

1. For n=0; 2; : : : ; p,
2. (A)−1Bun7 un+1,
3. Initialize (A−1)�V and (dp

u )�V
for n=p+ 1; p+ 2; : : : ; p+ n1− 1,

4. (A−1)�MB(dn
u)

�V 7 (dn+1
u ),

5. trunc(dn+1
u ; �V )7 (dn+1

u )�V .

It is essential for the success of this algorithm that the computation of the matrix vector
product fully exploits the compressed form of both matrix and vectors. This can be done using
the algorithm in Reference [19] or fast multiplication based on a general sparse format for both
matrix and vector as done in Reference [20]. This novel and important element of computing
in wavelet bases is that the compressed operators in standard and non-standard form can be
multiplied rapidly. The product of two operators in the standard form requires C(− ln �)N and
multiplication of operator in non-standard form requires order (− ln �)N operations where �
is desired accuracy. This implicit wavelet Galerkin schemes are competitive only if inverse
can be computed e�ciently. Due to our periodic domain inverse of evolution operator can be
e�ciently computed by FFT technique as described in Reference [19]. Another technique to
invert them e�ciently directly in wavelet basis by using a iteration algorithm described by
Beylkin [20] which requires fast matrix multiplication algorithm as described above. We are
using this technique.
Another wavelet-Taylor–Galerkin scheme can also be formulated from other time stepping,

i.e. leap-frog, forward Euler, etc. In all these methods a fundamental role is played by the
Taylor series in the time increment which is exploited indirectly in multi-step schemes and
directly in single step ones. In this respect, the two di�erent classes of methods correspond to
Runge–Kutta and Obrechko� [13] methods, respectively, for ordinary di�erential equations. W-
TGM scheme has the inconvenience in using the higher order time derivative for calculating
non-linear problems. Therefore, we can also use the following Runge–Kutta form of Lax–
Wendro� scheme. By approximating Equation (7) up to third-order accuracy, the formulation
of this scheme can be written as

uk+1=3 = uk + (�t=3)uk
t

uk+1=2 = uk + (�t=2)uk+1=3
t (13)

uk+1 = uk + �tuk+1=2
t

After putting time derivative from the governing PDEs spatial discretization of Equation (13)
can be performed by WGM. To deal with transient situations which evolve toward a highly
convective state, the global Taylor–Galerkin method is found to be ine�ective since it reduces
to standard Galerkin method as temporal term vanishes and to avoid highly complicated terms
which comes from the di�usion term after applying third-order W-TGM scheme, we can use
operator splitting as done in paper [14].
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Figure 2. (a) W-TGM solution vs exact solution for advection–di�usion problem; and
(b) real and imaginary parts of (�t ∗ eigenvalues) computed for asymptotic stability

analysis of W-TGM on advection–di�usion problem.

2.2.2. Theoretical stability of the linearized schemes. We use the notion of asymptotic sta-
bility of a numerical method as it is de�ned in References [13, 21] for a discrete problem
of the form du=dt=Lu where L is assumed to be diagonal matrix. The region of absolute
stability of a numerical method is de�ned for the scalar model problem du=dt= �u to be set
of all ��t such that ‖un‖ is bounded as t −→ ∞. Finally, we say that a numerical method is
asymptotic stable for a particular problem if, for small �t¿0, the product of �t times every
eigenvalues of L lies within the region of absolute stability. In Equation (9) putting un

t = �un

and un
tt = �2un we will get the following equation:(

1− ��t
2
+

�2�t2

4

)
un+1 =

(
1 +

��t
2
+

�2�t2

4

)
un (14)

So for the numerical stability of the scheme �t should satisfy the following condition:∣∣∣∣1 + ��t
2
+

�2�t2

4

∣∣∣∣¡
∣∣∣∣1− ��t

2
+

�2�t2

4

∣∣∣∣ (15)

From this condition we can conclude the absolute stability region of second-order accurate
W-TGM will be entire left half plane.

2.2.3. Numerical results. The accuracy of the proposed W-TGM has been veri�ed numer-
ically on the classical test problem of advection–di�usion of a Gaussian pro�le. The exact
solution is u(x; t)= (1=�(t)) exp[−(x − x0 − at)2=2�(t)2], where �(t)=�0(1 + 2�t=�20)

1=2. The
parameters are given by x0 = 3:75, a=1, �=0:01. Figure 2(a) shows the comparison of nu-
merical solution obtained for �t=10−3 using D6 scaling and wavelet function (D6 stands for
Daubechies wavelet which has a support in [0; 5]) with the exact solution, Figure 2(b) shows
the �t times the eigenvalues of matrix resulting from W-TGM scheme. Due to complex eigen-
values it is plotted in complex domain. The stability region of Figure 2(b) always satisfy the
stability criteria. Figure 3 shows the exact solution and numerical results obtained by di�erent
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Figure 3. Solution at t=0:1 with �t=10−3.

Table I. Compression error for WGM scheme.

�V =0 % elem �M =0 % elem
�M (A−1)�M E�M ; �V �V (dn

u)
�V E�M ; �V

10−10 14.74 7.2e− 11 10−10 61.78 5:6e− 10
10−9 14.32 2.2e− 09 10−9 57.81 5:3e− 09
10−8 13.58 8.64e− 09 10−8 56.25 4:5e− 08
10−7 13.18 2.3e− 06 10−7 51.56 3:1e− 07
10−6 11.79 2.21e− 05 10−6 49.21 3:8e− 06

method. Here we are using W-TGM based on Euler time stepping. It is clear that W-TGM is
giving more accurate solution compared to other methods. The vector u�M ; �V is the computed
solution given the threshold �M and �V . Hence, we de�ne the relative compression error as

E�M ; �V =
‖u�M ; �V − u0;0‖∞

‖u0;0‖∞

Table I shows the relative error introduced by compression E�M ; �V . It is seen from Figure 1
that signi�cant compression is achieved in matrix Dn and in wavelet-Taylor–Galerkin approach
number of elements in matrix Dn is decaying faster than wavelet Galerkin approach. Here
signi�cant compression is also achieved in solution vector (Table II).
Secondly we are showing the power of W-TGM on the problem of advection–di�usion equa-

tion with u0(x)= sin(x) where x∈ [0; 2�] with the analytical solution u(x; t)= e−�t sin(x−at).
Here we are using W-TGM based on Euler time stepping. In this case A= I −
(�t=2)(−a@x + �@2x) and B= I + (�t=2)(−a@x + �@2x) + (−a@x + �@2x). The comparison of errors
resulting in FD computation, WGM and W-TGM with Euler time stepping with respect to
the exact solution in L∞ norm are shown in Table III for the parameters a=1, �=0:001,
�t=10−2 with di�erent value of j for D6 wavelet.
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Table II. Compression error for W-TGM scheme.

�V =0 % elem �M =0 % elem
�M (A−1)�M E�M ; �V �V (dn

u)
�V E�M ; �V

10−10 18.31 8.6e− 11 10−10 88.28 6:6e− 10
10−9 17.64 6.2e− 10 10−9 85.16 2:4e− 09
10−8 16.88 4.6e− 9 10−8 80.47 3:3e− 08
10−7 15.81 1.3e− 07 10−7 74.22 3:3e− 07
10−6 13.61 2.4e− 05 10−6 67.19 4:7e− 06

Table III. Comparison of errors for FD, WGM,
W-TGM for advection–di�usion problem.

j FD WGM W-TGM

5 0.8654 1.499e− 004 1.7033e− 007
6 0.8654 1.492e− 004 2.7357e− 008
7 — 1.534e− 5 2.5026e− 008
9 — 1.123e− 5 2.4891e− 008
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Figure 4. (a) Initial function u0(x); and (b) truncated approximate initial solution by D6 with the
threshold �=0:001, which leads to 13 retained wavelet coe�cients, out of original 28.

Further a ‘—’ in the table denotes that the scheme is unstable.
To show the power of wavelet by W-TGM scheme here we are considering advection–

di�usion equation with initial condition u0(x)= sin(2�x) + exp−	(x−1=2)2 , which is smooth in
most of the domain except near x=0:5 where we have a spike and the thresholded wavelet
expansion of the initial solution u(x; 0) is shown in Figure 4. This wavelet expansion will
have few coe�cients, except for in the neighbourhood of the spike at x=0:5− t. In terms of
FD methods, we want to have many points in areas where the solution has strong variation
and few points in area where the solution is smooth. If we use a Galerkin method, this
corresponds to the representation of the solution having fewer basis functions in the smooth
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Figure 5. Solution of advection equation at t=0:3, �=0:0001,
j=7: (a) FD; (b) WGM; and (c) W-TGM.
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Figure 6. Solution of advection equation at t=0:3, �=0:0001, j=9: (a) W-TGM, �M =0,
�v=0; and (b) W-TGM, �M =0, �v=10−6.

areas. Note that by thresholding a wavelet representation we have a way to automatically �nd
a sparse representation of smooth part. Holmstrom and Walden have applied adaptive wavelet
methods on such type of PDEs [22, 23]. We stepped forward to t=0:3, where the solution
for j=7 is shown in Figure 5 using FD, WGM and W-TGM based on Euler time stepping.
In FD and WGM scheme oscillation are growing very fast with the increasing value of j. For
j=7 improvement of accuracy for W-TGM scheme over FD and WGM can be seen from
Figure 5. For j=8; 9 FD and WGM is completely giving unstable solution due to oscillation
near the spike, whereas in our approach of W-TGM scheme we are taking the advantage of
time accurate scheme as well as wavelet capabilities of compression to produce fast algorithm
based on fast matrix vector product in terms of sparsity. We are getting oscillation free
solution as shown in Figure 6 without and with truncation. FD and WGM are unable to
produce oscillation free solution near the spike with the same degree of freedom. For higher
value of �=0:001 solution is shown in Figure 7 using W-TGM scheme where both FD and
WGM scheme is producing unstable result.
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Figure 7. Solution of advection equation at t=0:3, �=0:001.

2.3. Multi-dimensional problems

In order to show that the proposed W-TGM is applicable to multidimensional situations, we
need a way to de�ne multivariate wavelets. The simplest way to obtain multivariate wavelets
is to employ anisotropic or isotropic tensor products. We have used second approach. To
show that this is e�ective, we shall consider the standard test problems of hill translation and
hill rotation [24].

Case 1: The problem of a Gaussian hill translating with a uniform velocity a and spreading
isotropically with a di�usivity � is governed by

ut = − a:∇u+ �∇2u (16)

Here time discretization will be same as in one-dimensional case as in Equation (9) second-
order W-TGM scheme. The equations are integrated till time t=0:5 is reached. The initial
distribution and the solution at t=0:5 without and with compression are shown in Figure 8.
Case 2: Consider the problem of a hill rotating around the origin governed by

@tu+∇:

(−yu

xu

)
= ��u (17)

Here we are using second-order accurate W-TGM scheme based on following Taylor series
expansion:

un+1 − un

�t
=
1
2
(un

t + un+1
t ) +

�t
4
(un

tt − un+1
tt ) (18)

Let ∇:
(−yu

xu

)
= v:∇u then the original equation is ut =−(v:∇u) + ��u and time derivative is

utt = v:∇(v:∇u)− �v:∇(�u) + ��(−(v:∇u+ ��u)), putting these values in Equation (18) till
second-order term, we will get a matrix form

Aun+1 =Bun (19)
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Figure 8. (a) Initial distribution of the hill; (b) solution at t=0:5 without compression for W-TGM
scheme; and (c) solution at t=0:5 with compression for W-TGM scheme.

To avoid higher order derivatives of di�usion term we can use operator splitting as done in
Reference [14]. Unfortunately for a N ×N space discretization, this will result in a system of
algebraic equation that is sparse but is of the order N 2 ×N 2. To overcome this problem, we are
taking full advantage of tensorial wavelet bases that leads to the factorization approximation
of 2D hill rotating operator.

For small 	 and 
(I − 	�+ 
�2)≈
(
I − 	

@2

@x2
+ 


@4

@x4

)(
I − 	

@2

@y2
+ 


@4

@y4

)
(20)

Then our W-TGM scheme express themselves as products of N ×N matrices

dn+1
u =Bdn

uB
T + �tA−1dfA−1T (21)

All the algorithms developed in one dimension using compression of wavelet can be general-
ized in two dimension also. To assess the accuracy of the W-TGM scheme in two-dimensional
situations, �rst Equation (17) is considered with initial condition u(x; 0)= (1 + cos(2�R))=2
for R¡0:5, u(x; 0)=0 otherwise, where R=

√
x2 + (y − 0:5)2. For �=0, initial data and nu-

merical solution without and with truncation are shown in Figure 9. The solution is in good
agreement with those presented by Smolianski and Kuzmin in Reference [25]. Secondly,
Equation (17) is considered with initial condition u(x; 0)= max(0;−3+4e−30|x−(0:25;0:25)|2) for
non-zero value of �. Because of the small dissipative e�ects the solution is small at the bound-
aries. Therefore, periodic boundary conditions are used and �=10−3. The result obtained by
the W-TGM scheme is shown in Figure 10. Numerical scheme shows remarkable accuracy.
In addition the �nal height of the cone was found 98 per cent of its original value, indicating
a minimal dissipation error.
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Figure 9. (a) Min u=0, max u=1; (b) min u=−3:9× 10−6, max u=0:9926, �M =0, �v=0;
and (c) min u=−10−6, max u=0:9926, �M =10−5, �v=10−5.
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Figure 10. (a) Min u=0, max u=1; (b) min u=−8:4× 10−5, max u=0:9887, �M =0, �v=0;
and (c) min u=−8:4× 10−5, max u=0:9887, �M =10−5, �v=10−5.

3. CONCLUSION

In this work a space and time accurate scheme called W-TGM for advection–di�usion problem
in one- and two-dimension are introduced, where we can take the bene�t of useful properties
of wavelet for compression of operator and solution. W-TGM appears to be fundamentally
implicit, thereby demanding matrix inversion at each time marching step. To avoid this time
consuming step we are taking the advantage of wavelet compression and for two-dimension
problem we are also using approximate factorization technique. The results are quite encour-
aging and we are extending our study to 3D and more complex phenomena of turbulence
where spurious oscillations are more serious when a signi�cant gradient is involved. This
technique is easy to implement and computationally e�cient.
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