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Abstract The closed form solutions of differential–difference equations arising from math-
ematical models of granulocytopoiesis, both with and without maturing cells, are presented.
The model with maturing cells, which we call model I, is considered first. The solution tech-
nique consists of a Laplace transform approach that converts each of the two differential–
difference equations to a difference equation in the transform domain, and subsequent Laplace
transform inversion of the solution to express it in the time domain. The model without matur-
ing cells, which we call model II, is next considered and is solved by a method similar to that
for model I. From these solutions, useful information and properties, like average number of
active and maturing cells, and the transient growth and half-life periods of cells in each stage,
can be obtained analytically. This information can play a very crucial role in the treatment of
granulocytopoiesis. Further, the numerical solution of another model, which we call model
III, for describing the dynamics of imatinib (drug used to treat certain types of cancer)-
treated chronic myelogenous leukemia is discussed using a wavelet adaptive computational
approach.

Keywords Closed form solution · Differential–difference equation · Granulocytopoiesis ·
Laplace transform · Wavelets

Introduction

Granulocytopoiesis or granulopoiesis (production of white blood cells) is hematopoiesis
(formation of blood cellular components) of granulocytes (category of white blood cells)
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Fig. 1 Process of granulocytopoiesis

beginning with stem cells (a cell that has the potential to regenerate tissue over a lifetime). It
occurs mainly within the bone marrow. The process is illustrated in Fig. 1, where myeloblasts,
promyelocytes, and myelocytes are proliferative cells. The maturation block consists of
metamyelocytes, band forms, and granulocytes, all of which nonproliferative. The prolifer-
ative cells go through a number of stages either by dividing a certain number of times or by
maturing without further dividing. For each cell type, there is a specific number n of stages,
a certain time that a cell remains in each stage, and a number f (fraction of cells that con-
tinues dividing as opposed to maturing). In the mathematical model of granulocytopoiesis,
myeloblasts go through 3 stages (nb = 3), promyelocytes go through 2 stages (n p = 2), and
myelocytes go through 1 stage (nm = 1), where nb, n p , and nm denote the respective number
of stages. However, nonproliferative cells have one stage only.

We now turn to the kinetics of the process of granulocytopoiesis. The transit time from stem
cell to myelocyte (the proliferative block) is in the vicinity of 140 h under normal conditions
[1]. Movement of granulocytes through the maturation block is believed to be a “first in,
first out” process in [2]. This information is derived from experimental measurements and
computer simulation of the process of granulocytopoiesis, which are prone to have some
errors. This information of cell kinetics has proved to be the key to predicting some type of
control mechanism for granulocytopoiesis. Our objective here is to provide a mechanism for
obtaining the same sort of information without errors. Closed form solutions of differential–
difference equations governing these processes, that serve as an effective tool for providing
information such as average number of active and maturing cells, and the transient growth
and half-life periods of cells in each stage, are derived in this paper. Another model which
leads to difference equations is described in [3,4].

The mathematical model of granulocytopoiesis considered in [5] describes both the normal
process and the chronic myelogenous leukemia (CML) with different parameters values. It
is more complete than the previously defined models [6–8]. CML, also known as chronic
granulocyte leukemia (CGL), is a cancer of white blood cells [9] and represents 20 % of all
leukemias. It is a form of leukemia characterized by the increased and unregulated growth
of myeloid cells in the bone marrow and accumulation of these cells in the blood. CML is
a clonal bone marrow stem cell disorder in which proliferation of mature granulocytes and
their precursors is the main finding. CML is often suspected on the basis on the complete
blood count, which shows increased granulocytes of all types. The recently developed drug
imatinib has proven to be a highly effective and first-line treatment for CML by Druker
and Lydon [10] compared to the previous standard treatment of chemotherapy or stem cell
transplantation by Campbell et al. [11].

In recent years, there has been many more works deriving mathematical models of CML
and related to that. Some of them are as follows. A simulation study of cyclical granulopoiesis
in chronic granulocytic leukemia is given in [12]. The model of neutrophil production is
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simulated numerically by Rubinow and Lebowitz [8] due to lack of analytical solution and
its steady state behavior is demonstrated. The model of stem cell proliferation is developed
by Loeffler and Wichmann [13]. A model that accounts for the immune response in CML is
presented in [14]. The aim of the work presented in [15] is to identify the parameters that
control cancer remission. In [16], a model describing the dynamics of imatinib treated CML
is presented as a system of difference equations, and its continuous extension is presented
as a system of partial differential equations in [17]. All these works have been motivated by
the hope to control cancer in a significant manner. However, these works have not been able
to characterize analytically the transient behavior of cell growth. Motivated by this fact, we
analyze the transient behavior of cell growth in our work, using the mathematical model of
granulocytopoiesis presented in [5], which is the most comprehensive model available till
date to the best of our knowledge.

In the later part of this paper, the numerical solution of the model described in [17] is
discussed using an adaptive computational approach. Wavelet methods for simulating partial
differential equations (PDEs) compose a relatively new research field and have been already
proved as efficient tools for simulating PDEs [18–20] whose solutions require locally adapted
grid. In recent years, wavelet analysis has been applied to a large variety of biomedical
signals [21]. The ability of wavelets to identify and isolate localized structures has made
them attractive candidates for adaptive computation. Here we solve PDEs using a wavelet
adaptive computational approach. This is the first attempt, to the best of our knowledge,
where this approach has been applied to PDEs arising from cancer modelling.

In this paper, we derive closed form solutions of the differential–difference equations
arising from mathematical models of granulocytopoiesis considered in [5], both with and
without maturing cells. The model with maturing cells (that is, involving both active and
maturing cells), which we call model I, is considered first. The solution technique consists of
a Laplace transform approach that converts each of the two differential–difference equations
to a difference equation in the transform domain, and subsequent Laplace transform inversion
of the solution to express it in the time domain. The model without maturing cells (that is,
involving active cells only), which we call model II, is next considered and is solved by a
method similar to that for model I. Note that the limitation of the analytical method used
is linearity of the differential–difference equation which governs a particular model. The
numerical aspects of another model [17], which we call model III, are also discussed.

Mathematical Model of Granulocytopoiesis With Maturing Cells (Model I)

Formulation of Model I

Some symbols used in formulating the mathematical model of granulocytopoiesis are shown
in Table 1. Note from Fig. 1 that a stem cell passes through a succession of stages before it

Table 1 Symbols used in formulating the mathematical model of granulocytopoiesis

fb, f p, fm Fractions of myeloblasts, promyelocytes, myelocytes, respectively, which
will continue dividing

nb, n p, nm Number of stages of myeloblasts, promyelocytes, myelocytes, respectively

A0 (kg−1) Total number of active stem cells

q (h−1kg−1)= 2A0
T0

Rate at which myeloblasts are produced by stem cells
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reaches the blood stream. Stem cells produce myeloblasts in stage 1 at the rate of q cells per
unit time per kilogram of body weight, where q = (2A0)/T0 (see Table 1). A fraction f1

of these cells is active. After a time T1, the active cells divide remaining myeloblasts while
the rest of the cells enter stage 2 by maturing. After nb such stages or equivalent maturation,
the myeloblasts becomes promyelocytes. After n p further stages or equivalent maturation the
promyelocytes become myelocytes, and after nm more stages or equivalent maturation mye-
locytes enter the maturation block and finally enter into the blood. Using the notations in
Table 1, the mathematical model of granulocytopoiesis with maturing cells, as considered in
[5], is given by

Tj
d A j

dt
= −A j + 2 f j

Tj

Tj−1
A j−1,

j = 1, 2, . . . , nb + n p + nm, (2.1a)

Tj
d M j

dt
= −M j + 2(1 − f j )

Tj

Tj−1
A j−1 + Tj

Tj−1
M j−1,

j = 1, 2, . . . , nb + n p + nm, (2.1b)

where A j (t) (in short form A j ) denotes the number of active cells in stage j at time t and
M j (t) (in short form M j ) denotes the number of maturing cells in stage j at time t , with
M0(t) = 0. Note that (2.1a) and (2.1b) are differential–difference equations in A j (t) and
M j (t), respectively.

Closed Form Solution of Model I

By using the explicit solutions of linear difference equations presented in [22,23], we solve
Eqs. (2.1a) and (2.1b) in closed form.

We use the Laplace transform approach to convert these equations to difference equations.
Let A j (0) and M j (0) be the initial values of A j (t) and M j (t), respectively, at time t = 0,
and let A j (s) and M j (s) denote, respectively, their one-sided Laplace transforms, given by

A j (s) =
∞∫

0

A j (t) exp(−st)dt, M j (s) =
∞∫

0

M j (t) exp(−st)dt. (2.2)

Consider now the differential–difference equation (2.1a). Taking Laplace transforms of
both sides, we get

Tj

(
sA j (s) − A j (0)

)
= −A j (s) + 2 f j

Tj

Tj−1
A j−1(s), (2.3)

which results in the first-order linear difference equation (in the index j)

A j (s) = 2 f j Tj

Tj−1(sTj + 1)
A j−1(s) + Tj

(sTj + 1)
A j (0), (2.4)

with initial condition A0(s). This can be expressed in the form

A j (s) = α j A j−1(s) + β j , (2.5)

where

α j = 2 f j Tj

Tj−1(sTj + 1)
, β j = Tj

(sTj + 1)
A j (0). (2.6)
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The solution of (2.5) is given by [22]

A j (s) =
⎡
⎣

j∏
i=1

αi

⎤
⎦ A0(s) +

j−1∑
k=1

⎡
⎣

j∏
i=k+1

αi

⎤
⎦ βk + β j . (2.7)

Substituting (2.6) in (2.7), we get

A j (s)=

[∏ j

i=1

2 fi Ti

Ti−1

]

∏ j

i=1
(sTi + 1)

A0(s) +
j−1∑
k=1

[∏ j

i=k+1

2 fi Ti

Ti−1

]
Tk Ak(0)

∏ j

i=k
(sTi + 1)

+ Tj A j (0)

(sTj + 1)
. (2.8)

To obtain the closed form solution for A j (t) we need to do the Laplace inversion of A j (s)
in (2.8).

For distinct Ti ’s, we can express, using partial fractions,
∏ j

i=k
Ti∏ j

i=k
(sTi + 1)

=
j∑

l=k

cl,k, j(
s + 1

Tl

) , (2.9a)

where

cl,k, j = 1
∏ j

m=k

m �=l

(
1

Tm
− 1

Tl

) . (2.9b)

Taking inverse Laplace transform, we get

L−1

⎧⎪⎪⎨
⎪⎪⎩

j∑
l=k

cl,k, j(
s + 1

Tl

)
⎫⎪⎪⎬
⎪⎪⎭

=
j∑

l=k

cl,k, j exp

(
− t

Tl

)
u(t), (2.10)

where u(·) denotes the unit step function. Further, we have

L−1

⎧⎪⎪⎨
⎪⎪⎩

1(
s + 1

Tl

)A0(s)

⎫⎪⎪⎬
⎪⎪⎭

= exp

(
− t

Tl

)
u(t) ∗ A0(t) =

t∫

0

exp

(
− (t − τ)

Tl

)
A0(τ )dτ,

(2.11)

where ∗ denotes convolution. Substituting (2.9) in (2.8) and taking the inverse Laplace trans-
form using (2.10) and (2.11), we can express A j (t) as

A j (t) =
⎡
⎣

j∏
i=1

2 fi

Ti−1

⎤
⎦

j∑
l=1

cl,1, j

t∫

0

exp

(
− (t − τ)

Tl

)
A0(τ )dτ

+
j−1∑
k=1

⎡
⎣

j∏
i=k+1

2 fi

Ti−1

⎤
⎦ Ak(0)

j∑
l=k

cl,k, j exp

(
− t

Tl

)
u(t)

+A j (0) exp

(
− t

Tj

)
u(t). (2.12)
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Since A j (t) has support [0, Tj ), an expression for A j (t) in closed form (in terms of A0(t))
is obtained from (2.12) as

A j (t) =
⎡
⎣

j∏
i=1

2 fi

Ti−1

⎤
⎦

j∑
l=1

cl,1, j

min(t,T0)∫

0

exp

[
− (t − τ)

Tl

]
A0(τ )dτ

+
j−1∑
k=1

⎡
⎣

j∏
i=k+1

2 fi

Ti−1

⎤
⎦ Ak(0)

j∑
l=k

cl,k, j exp

(
− t

Tl

)

+A j (0) exp

(
− t

Tj

)
, 0 ≤ t < Tj . (2.13)

Next we consider the differential–difference equation (2.1b). Laplace transformation of
both sides results in the first-order linear difference equation (in the index j)

M j (s) = Tj

Tj−1(sTj + 1)
M j−1(s) +

Tj M j (0) + 2(1 − f j )Tj

Tj−1
A j−1(s)

(sTj + 1)
, (2.14)

with initial condition M0(s). Equation (2.14) has the same structure as (2.5). Solving (2.14)
in the same way as (2.5) gives rise to

M j (s) =

[∏ j

i=1

Tj

Ti−1

]

∏ j

i=1
(sTi + 1)

M0(s)

+
j−1∑
k=1

[∏ j

i=k+1

Ti

Ti−1

] {
Tk Mk(0) + 2(1 − fk)Tk

Tk−1
Ak−1(s)

}

∏ j

i=k
(sTi + 1)

+
Tj M j (0) + 2(1 − f j )Tj

Tj−1
A j−1(s)

(sTj + 1)
. (2.15)

Applying (2.9) and taking the inverse Laplace transform of (2.15) using (2.10) and (2.11),
we can express M j (t) as

M j (t) =
⎡
⎣

j∏
i=1

1

Ti−1

⎤
⎦

j∑
l=1

cl,1, j

t∫

0

exp
(

− (t − τ)

Tl

)
M0(τ )dτ

+
j−1∑
k=1

⎡
⎣

j∏
i=k+1

1

Ti−1

⎤
⎦

j∑
l=k

cl,k, j

⎧⎨
⎩Mk(0) exp

(
− t

Tl

)
u(t)

+2(1 − fk)

Tk−1

t∫

0

exp
(

− (t − τ)

Tl

)
Ak−1(τ )dτ

⎫⎬
⎭

+
⎧⎨
⎩M j (0) exp

(
− t

Tj

)
u(t)+ 2(1 − f j )

Tj−1

t∫

0

exp
(

− (t−τ)

Tj

)
A j−1(τ )dτ

⎫⎬
⎭ . (2.16)
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Since A j (t) and M j (t) have support [0, Tj ), we obtain from (2.16) an expression for
M j (t) in closed form (in terms of M0(t) and A0(t), . . . , A j−1(t)), which is given by

M j (t) =
⎡
⎣

j∏
i=1

1

Ti−1

⎤
⎦

j∑
l=1

cl,1, j

min(t,T0)∫

0

exp

(
− (t − τ)

Tl

)
M0(τ )dτ

+
j−1∑
k=1

⎡
⎣

j∏
i=k+1

1

Ti−1

⎤
⎦

j∑
l=k

cl,k, j

⎧⎪⎨
⎪⎩Mk(0) exp

(
− t

Tl

)

+2(1 − fk)

Tk−1

min(t,Tk−1)∫

0

exp

(
[− (t − τ)

Tl

)
Ak−1(τ )dτ

⎫⎪⎬
⎪⎭

+

⎧⎪⎨
⎪⎩M j (0) exp

(
− t

Tj

)
+ 2(1 − f j )

Tj−1

min(t,Tj−1)∫

0

exp

(
− (t − τ)

Tj

)
A j−1(τ )dτ

⎫⎪⎬
⎪⎭,

0 ≤ t < Tj , (2.17)

where A j (t) is given in closed form by (2.13).
In Eqs. (2.1a) and (2.1b), we do not make any distinction with respect to different cells

and consider the total number of stages as nb + n p + nm . However, to explain the steady
state version of the model, we distinguish the parameters with respect to different cells.
Equations (2.1a) and (2.1b) admit steady state solutions Ab

j and Mb
j (Ab

j = A j , Mb
j =

M j , 1 ≤ j ≤ nb) in case of myeloblasts, Ap
j and M p

j (Ap
j = Anb+ j , M p

j = Mnb+ j ,

1 ≤ j ≤ n p) in case of promyelocytes, Am
j and Mm

j (Am
j = Anb+n p+ j , Mm

j = Mnb+n p+ j ,

1 ≤ j ≤ nm) in case of myelocytes, which are given by [5]

Ab
j

Tb
= (2 fb)

j A0

T0
, j = 1, 2, . . . , nb,

Ap
j

Tp
= (2 f p)

j Ab
nb

Tb
, j = 1, 2, . . . , n p,

Am
j

Tm
= (2 fm) j Ap

n p

Tp
, j = 1, 2, . . . , nm, (2.18a)

Mb
j

Tb
= abj

A0

T0
, j = 1, 2, . . . , nb ,

M p
j

Tp
= apj

Ab
nb

Tb
+ Mb

nb

Tb
, j = 1, 2, . . . , n p,

Mm
j

Tm
= amj

Ap
n p

Tp
+ M p

n p

Tp
, j = 1, 2, . . . , nm, (2.18b)

where

Tb = Tj , fb = f j , j = 1, . . . , nb,

Tp = Tnb+ j , f p = fnb+ j , j = 1, . . . , n p,

Tm = Tnb+n p+ j , f p = fnb+n p+ j , j = 1, . . . , nm,
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abj = 2(1 − fb)
(

(2 fb) j −1
2 fb−1

)
, apj = 2(1 − f p)

(
(2 f p) j −1

2 f p−1

)
,

amj = 2(1 − fm)
(

(2 fm ) j −1
2 fm−1

)
.

The fit of some experimental data to the steady state model (2.18) has been shown in [5].

Significance of the Closed Form Solution of Model I Discussed in Previous Subsection

The closed form solution of the original model characterizing the transient behavior of gran-
ulocytopoiesis with maturing cells is given by (2.12) and (2.16). From the analytical expres-
sions of A j (t) in (2.12) and M j (t) in (2.16), we can obtain many meaningful quantities. For
example, the average number of active and maturing cells ( Ā j and M̄ j ) in each stage j can
be computed as

Ā j = 1

Tj

Tj∫

0

A j (t)dt, M̄ j = 1

Tj

Tj∫

0

M j (t)dt.

In particular, the average number of active promyelocytes in the j th promyelocyte stage ( Ā p
j ),

which corresponds to the overall (nb + j)th stage, can be computed as

Ā p
j = 1

Tp

Tnb+ j∫

0

Anb+ j (t)dt.

We take the initial values from [24] as A0(0) = 1.768 × 1010, A1(0) = 0.54 × 1010,
A2(0) = 1.44 × 1010, A3(0) = 18.7 × 1010 and let f1 = 0.8, f2 = 0.6, and f3 = 0.5,
T0 = 33 h, T1 = 18 h, T2 = 24 h. The number of promyelocytes (A3(t)) at time t = 179 h
using the closed form solution (2.12) is plotted in Fig. 2. We observe from Fig. 2 that the
number of myeloblasts decreases during the transit time T1 = 18 h. However, the numbers
of promyelocytes and myelocytes increase, as expected. We can also calculate the half-life
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of cells in a given stage from these expressions. For example, the half-life of active cells in
stage j , which we denote as TH,A j , can be computed by solving the equation 0.5A j (0) =
A j (TH,A j ). From (2.12), assuming A0(t) = A0 (that is, a constant) in the 0th stage, this
results in the equation

0.5A j (0) = A0

⎡
⎣

j∏
i=1

2 fi

Ti−1

⎤
⎦

j∑
l=1

cl,1, j Tl exp

(
− TH,A j

Tl

) {
exp

(
min(TH,A j , T0)

Tl

)
− 1

}

+
j−1∑
k=1

⎡
⎣

j∏
i=k+1

2 fi

Ti−1

⎤
⎦ Ak(0)

j∑
l=k

cl,k, j exp

(
− TH,A j

Tl

)

+A j (0) exp

(
− TH,A j

Tj

)
. (2.19)

which can be solved numerically to calculate the half-life TH,A j using appropriate choice of
parameters. In particular, putting j = 1 in (2.19), we can get the half-life of active cells in
the first stage obtained by solving the equation

0.5A1(0) = A0

[
2 f1

T0

]
T1 exp

(
− TH,A1

T1

){
exp

(
min(TH,A1 , T0)

T1

)
− 1

}

+A1(0) exp

(
− TH,A1

T1

)
, (2.20)

which results in

TH,A1 = T1 ln

⎡
⎢⎢⎣

1 − A1(0)T0

2A0 f1T1

1 − A1(0)T0

4A0 f1T1

⎤
⎥⎥⎦ if TH,A1 < T0,

= T1 ln

{
4A0 f1T1

A1(0)T0

[
exp

(
T0

T1

)
− 1

]
+ 2

}
if TH,A1 > T0. (2.21)

Moreover, we can predict the transient growth of active and maturing cells in each stage as
well as globally, which can play very crucial role in the treatment of granulocytopoiesis.

Mathematical Model of Granulocytopoiesis Without Maturing Cells (Model II)

Formulation of Model II

We now modify the model I discussed in the previous section by considering active cells
only. The resting stem cells A−1 become active stem cells A0 after time T−1. These active
cells divide after a time T0 and a fraction 1 − f of the cells return to the resting stage. The
remaining fraction f of the cells proceed to stage 1. Cells in stage 1 divide after a time T1

and both types of cells proceed to stage 2. This procedure continues until cells reach stage
m. Assuming that T0 = T1 = · · · = Tm , and denoting κ as

κ = T0

T−1
, (3.1)
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we find that A j (t) satisfies the differential–difference equations [5]

T−1
d A−1

dt
= −A−1 + 2(1 − f )κ−1 A0, (3.2a)

T0
d A0

dt
= −A0 + κ A−1, (3.2b)

T0
d A1

dt
= −A1 + 2 f A0, (3.2c)

T0
d A j

dt
= −A j + 2A j−1, j = 2, . . . , m. (3.2d)

Closed Form Solution of Model II

Taking Laplace transforms of both sides of (3.2a) and (3.2b), we get, in matrix form,

[
1 + sT−1 −2(1 − f )κ−1

−κ 1 + sT0

] [
A−1(s)
A0(s)

]
=

[
T−1 A−1(0)

T0 A0(0)

]
. (3.3)

Solving (3.3) for A−1(s) and A0(s) using matrix inversion results in

A−1(s) = T−1
[
A−1(0) + 2(1 − f )A0(0) + sT0 A−1(0)

]
(2 f − 1) + s(T−1 + T0) + s2T−1T0

, (3.4a)

A0(s) = T0
[
A−1(0) + A0(0) + sT−1 A0(0)

]
(2 f − 1) + s(T−1 + T0) + s2T−1T0

. (3.4b)

Next, we take the Laplace transform both sides of (3.2c) and solve for A1(s) to yield

A1(s) = T0 A1(0) + 2 f A0(s)

(1 + sT0)
. (3.5)

Substituting (3.4b) in (3.5) gives

A1(s) =
T0

⎡
⎣ (2 f − 1)A1(0) + 2 f (A−1(0) + A0(0))

+s {(T−1 + T0)A1(0) + 2 f T−1 A0(0)}
+s2T−1T0 A1(0)

⎤
⎦

(1 + sT0)
(
(2 f − 1) + s(T−1 + T0) + s2T−1T0

) . (3.6)

Finally, taking the Laplace transform of both sides of (3.2d) results in the difference
equation

A j (s) = 2

(sT0 + 1)
A j−1(s) + T0 A j (0)

(sT0 + 1)
, (3.7)

with initial condition A1(s). Solving (3.7) using the same approach as in Model I yields

A j (s) = 2 j−1

(sT0 + 1) j−1 A1(s) + T0

j∑
k=2

2 j−k Ak(0)

(sT0 + 1) j−k+1 . (3.8)
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Taking the inverse Laplace transform of both sides of (3.8), we obtain

A j (t) = 2 j−1

( j − 2)! T j−1
0

t∫

0

τ j−2 exp

(
− τ

T0

)
A1(t − τ)dτ

+
j∑

k=2

2 j−k Ak(0)

( j − k)! T j−k
0

t j−k exp

(
− t

T0

)
u(t). (3.9)

We can simplify (3.9) further using the structure of A1(s) in (3.6), which can be expressed
as

A1(s) = C(s)(
s + 1

T0

) (
s + 1

q1

)(
s + 1

q2

) , (3.10)

where

C(s) =

⎡
⎣ (2 f − 1)A1(0) + 2 f (A−1(0) + A0(0))

+s {(T−1 + T0)A1(0) + 2 f T−1 A0(0)}
+s2T−1T0 A1(0)

⎤
⎦

T−1T0
, (3.11)

and −1/q1,−1/q2 are the roots of the quadratic (in s) equation

(2 f − 1) + s(T−1 + T0) + s2T−1T0 = 0,

which are given by

q1 = (T−1 + T0) − √
(T−1 + T0)2 − 4T−1T0(2 f − 1)

2(2 f − 1)
,

q2 = (T−1 + T0) + √
(T−1 + T0)2 − 4T−1T0(2 f − 1)

2(2 f − 1)
. (3.12)

Using partial fractions, A1(s) can be expressed as

A1(s) = c0(
s + 1

T0

) + c1(
s + 1

q1

) + c2(
s + 1

q2

) , (3.13)

with

c0 =
C

(
− 1

T0

)
(

1

q1
− 1

T0

) (
1

q2
− 1

T0

) ,

c1 =
C

(
− 1

q1

)
(

1

T0
− 1

q1

) (
1

q2
− 1

q1

) , c2 =
C

(
− 1

q2

)
(

1

T0
− 1

q2

)(
1

q1
− 1

q2

) ,

(3.14)

where C(·) is given by (3.11). Laplace inversion of (3.13) results in

A1(t) =
[

c0 exp

(
− t

T0

)
+ c1 exp

(
− t

q1

)
+ c2 exp

(
− t

q2

)]
u(t). (3.15)
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Substituting (3.15) in (3.9), and using the result

∫
x j exp(−x)dx = − j ! exp(−x)

j∑
k=0

xk

k! ,

we get

A j (t) = 2 j−1c0

( j − 1)! T j−1
0

exp

(
− t

T0

)
u(t)

+ 2 j−1
2∑

i=1

ci q
j−1

i

(qi − T0) j−1

⎡
⎣exp

(
− t

qi

)
− exp

(
− t

T0

) j−2∑
k=0

(qi − T0)
k

k! T k
0 qk

i

tk

⎤
⎦ u(t)

+
j−2∑
k=0

2k A j−k(0)

k! T k
0

tk exp

(
− t

T0

)
u(t). (3.16)

Since A j (t) has support [0, T0) in this case, we obtain from (3.16) A j (t) in closed form as

A j (t) = 2 j−1c0

( j − 1)! T j−1
0

exp

(
− t

T0

)

+ 2 j−1
2∑

i=1

ci q
j−1

i

(qi − T0) j−1

⎡
⎣exp

(
− t

qi

)
− exp

(
− t

T0

) j−2∑
k=0

(qi − T0)
k

k! T k
0 qk

i

tk

⎤
⎦

+
j−2∑
k=0

2k A j−k(0)

k! T k
0

tk exp

(
− t

T0

)
, 0 ≤ t < T0, (3.17)

where q1, q2 are given by (3.12) and c0, c1, c2 by (3.14). The steady state version of the
model (3.2) and fit of some experimental data are explained in [5].

Significance of the Closed Form Solution of Model II Discussed in Previous Subsection

Again, we can predict useful transient information regarding this model from (3.16). For
example, the half-life of active cells in the second stage, which we denote as TH,A2 , can be
obtained from the equation 0.5A2(0) = A2(TH,A2), which [from (3.17)] is

0.5A2(0) = 2c0

T0
exp

(
− TH,A2

T0

)

+ 2
2∑

i=1

ci qi

(qi − T0)

[
exp

(
− TH,A2

qi

)
− exp

(
− TH,A2

T0

)]

+A2(0) exp

(
− TH,A2

T0

)
. (3.18)

This can be solved numerically with appropriate choice of parameters to obtain TH,A2 .
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Mathematical Model for Imatinib: Treated Chronic Myelogenous Leukemia

Formulation of Model III

In this model, the hematopoietic stem cells (HSCs) are assumed to exist in two growth
compartments: Alpha (denoted by A) and Omega (denoted by �). At the beginning of every
time step (representing one hour), a stem cell may transfer from A to � with probability ω

or from � to A with probability α as shown in Fig. 3, where the proliferating cells in the �

compartment progress through various stages of the cell cycle: G1, S, G2 and M . The index
of the stem cells is described by x = − log a, where a is the affinity and x ∈ [xmin, xmax].
Let A(x, t) denote the population density of Alpha cells with x = log a at time t . As time
progresses, the x-components of these cells decrease at a constant rate until they reach xmin.
At this point, cells start accumulating at the boundary point x = xmin. Let A∗(t) denote the
population of Alpha cells at x = xmin and �(x, c, t) denote the population density of Omega
cells with log affinity x and counter c at time t . As time progresses, the x-components of these
cells increase at a constant rate until they reach xmax. At the same time, the c-components
(that record the position of the cells in their cell cycle) also increase at a constant rate. The
cells that transfer into Omega from the A∗ state enter at a point source P and travel along the
appropriate characteristic curve with respect to x and c. Let �∗(x, t) denote the population
of cells that are transferred from A∗ into the point source P at time t , and let A and � denote
the total population of cells in the A and � compartments, respectively. Then

�(t) =
xmax∫

xmin

49∫

0

�(x, c, t) dc dx +
xmax∫

xmin

�∗(x, t) dx, (4.1)

A(t) =
xmax∫

xmin

A(x, t) dx + A∗(t) . (4.2)

The points y1, y2, y3, y4, and y5 correspond to the x-values at which �∗ cells attain time
counters of 49, 32, 49, 32, and 49, respectively, after entering the point source P . For details
about the model one can refer to [17].

The formulation of the PDEs for each of the populations is as follows. For x ∈ [xmin, xmax],
A satisfies

∂ A

∂t
− ρr

∂ A

∂x
= −ω(�, exp(−x))A + α(A, exp(−x))

32∫

0

�(x, c, t)dc (4.3)

+
{

0, x ∈ Xa

−α(A, exp(−x)), x ∈ Xb,

where

Xa = (xmin, y1] ∪ (y2, y3] ∪ (y4, y5],
Xb = (y1, y2] ∪ (y3, y4] ∪ (y5, xmax].

Fig. 3 Transition probabilities of
stem cell
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Assuming that xmin = 0, the values of yi are given by y1 = 17ρd , y2 = 49ρd , y3 = 66ρd ,
y4 = 98ρd , y5 = 115ρd , where the advection rate ρd is given by log d , and d (differentiation
factor) ≈ 1.05. The left-hand side of the Eq. (4.3) accounts for the linear advection of the
A population in the negative x-direction. The advection rate ρr is given by log r , where r
(regeneration factor) = 1.1 [25]. The first term on the right-hand side of the Eq. (4.3) accounts
for the cells that transfer out of A into �. The transition rate ω is expressed as

ω(�(t), a(t)) = amin

a(t)
fw(�(t)),

where � is given by Eq. (4.2) and fw is the sigmoidal function. The second term on the
right-hand side of Eq. (4.3) is the rate in which cells transfer into A from �. The transition
rate α is expressed as

α(A(t), a(t)) = a(t)

amax
fα(�(t)),

where A is given by Eq. (4.1) and fα is the sigmoidal function. Only � cells in the G1
phase (i.e., with time counters c between 0 and 32) can transfer into A, which explains the
boundaries in the integral. The last term on the right-hand side of Eq. (4.3) is the rate that
cells transfer from �∗ into A. The quantity A∗ is governed by the differential equation

d A∗

dt
= −ω(�, exp(−xmin))A∗(t) + ρr A(xmin, t). (4.4)

The PDE for � is

∂�

∂t
+ ρd

∂�

∂x
+ ∂�

∂c
=

{−α(A, exp(−x)), for c ∈ (0, 32]
0, for c ∈ (32, 49]. (4.5)

Finally, the PDE for �∗ is

∂�∗

∂t
+ ρd

∂�∗

∂x
=

{
0, x ∈ Xa

−α(A, exp(−x))�∗, x ∈ Xb.
(4.6)

Any cell in the � compartment that has attained the maximal log affinity xmax is destined to
differentiate into a precursor cell. Hence, only cells with a smaller log affinity can exist in
the A compartment, which means A(xmax, t) = 0. Once � cells reach the boundary c = 49
they divide, and hence we have

�(x, 0, t) = 2�(x, 49, t).

At c = 32, we have �(x, 32+, t) = 2�(x, 32−, t) + w(�, exp(−x))A. The boundary
condition for �∗ at the point source P is

�∗(xmin, t) = ω(�̄, exp(−xmin))

ρd
A∗.

When the time counters c of the �∗ cells reach 49, i.e., at y1, y3, and y5, cells divide, and
hence we have

�(y+
i , t) = 2�(y+

i , t), i = 1, 3, 5.

We also see that �∗ is continuous at y2 and y4, and hence

�(y+
i ) = �(y−

i , t), i = 2, 4.
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Fig. 4 Numerical solution of PDE model (Ph− and Ph+ cells)

The PDE for the precursor cells can thus be written as a linear advection equation that
represents a simple age-based formulation, in the form

∂ P

∂t
+ ∂ P

∂s
= 0, s ∈ [0, 480). (4.7)

Similarly, the PDE for maturing cells is

∂ M

∂t
+ ∂ M

∂s
= 0, s ∈ [0, 192), (4.8)

where P(s, t) and M(s, t) denote the population density of precursor and maturing cells
at stage s and time t , respectively. The PDEs for subpopulation Ph− (nonleukemia cells)
(A−, A∗,−,�−,�∗,−, P−, M−) are similar to Eqs. (4.3), (4.4), (4.5), (4.6), (4.7), (4.8). The
PDEs for subpopulation Ph+ (leukemia cells) (A+, A∗,+, P+, M+) are similar to Eqs. (4.3),
(4.4), (4.7), (4.8), while for Ph+(�+,�∗,+) subpopulation PDEs are modified as described
in [17].

Numerical Solution of Model III

Roeder et al. [25] conducted numerical studies of CML genesis from one leukemia stem
cell. The transition from one leukemia cell to a BCR-ABL ratio of over 99 simulating the
dynamics for up to 15 years. Such a long time simulation with a PDE model is challenging for
traditional methods (e.g., finite difference, finite volume). To utilize the ability of wavelets
for identification and isolation of localized structures, we solve PDEs arising from the
model as discussed in previous subsection using a wavelet adaptive computational approach
[26,27].

Figure 4 shows the number of mature Ph− and mature Ph+ cells plotted against time. We
observe from Fig. 4a that the number of nonleukemia cells decreases with time. Moreover,
the number of leukemia affected cells increases in a leukemia patient in Fig. 4b. The corre-
sponding grid for the simulation of nonleukemia and leukemia affected cells is also plotted
in Fig. 4. When there is a sharp change in the Ph− and Ph+ cells, the solution is automatically
obtained using a finer mesh, while it is obtained using coarser mesh for the remaining part.
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The coarser/finer mesh is automatically obtained depending on the behavior of cells which
ensures the automatic adaptive feature of this approach.

Concluding Remarks

The novelty of this work is in the mathematical results which indicate that the transient
information about all the models of granulocytopoiesis can be predicted accurately by looking
at the derived closed form solutions and numerical solution. These results serve not only to
suggest a new direction for cancer research, but also to illustrate the need for understanding
the transient development process of granulocytopoiesis against the dynamics of different
treatments ([28] and [16]).
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