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In this study a set of new space and time accurate numerical methods based on different
time marching schemes such as Euler, leap-frog and Crank-Nicolson for partial differ-
ential equations of the form ut = Lu + N f(u), where L is linear differential operator
and N f(u) is a nonlinear function, are proposed. To produce accurate temporal differ-
encing, the method employs forward/backward time Taylor series expansions including
time derivatives of second and third order which are evaluated from the governing partial
differential equation. This yields a generalized time discretized scheme which is approxi-
mated in space by Galerkin method. The compactly supported orthogonal wavelet bases
developed by Daubechies are used in Galerkin scheme. This new wavelet-Taylor Galerkin
approach is successively applied to heat equation, convection equation and inviscid
Burgers’ equation.

Keywords: Taylor-Galerkin method; wavelets; time marching scheme; parabolic equation;
hyperbolic equation.

1. Introduction

In the past two decades interest in wavelets has been nothing short of being remark-
able. Wavelet analysis assumed significance due to successful applications in signal
and image processing during the eighties. The study of wavelets attained the present
growth after the mathematical analysis of wavelets by Stromberg [1981], Grossmann
and Morlet [1984] and Meyer [1985]. The multiresolution analysis of Mallat and
Meyer [1989] led to Daubechies [1988] orthonormal family of wavelets. As wavelet
theory progressed and more tools became available, their use spread to areas other
than signal processing.

Recently wavelet Galerkin approximations have been studied as an alternative
to conventional finite difference (FD) and finite element methods for partial differ-
ential equations (PDEs). The first applications of wavelets to the solution of PDEs
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seems to have consisted of Galerkin methods on problems with periodic bound-
ary conditions as shown in [Amaratunga et al. (1994)]. Indeed, as was noted by
Meyer [1990], the techniques which were first developed on the real line could be
easily modified by a standard procedure of periodization to be used on L2([0, 1]) in
the periodic case. Another approach into the study of wavelet differential operators
is by Beylkin et al. [1991], Froleich et al. [1997] and Restrepo et al. [1995] found this
approach is a viable option for the hyperbolic Boussinesq system of PDEs. Glowinski
et al. [1990] considered wavelet based variational methods to solve one dimension
linear and non-linear ordinary differential equations and observed that wavelets
provide a robust and accurate alternative to more traditional methods. While the
investigations of Liandrat et al. [1992] and Latto and Tenenbaum deal with periodic
boundary conditions for the Burgers’ equation. In another useful approach wavelets
are used to drive adaptive finite difference method, as advocated by Jameson [1998]
and later this issue has been established in a series of papers [Holmstrom (1999);
Holmstrom and Walden (1998); Fatkulin and Hesthaven (2001)]. An adaptive sec-
ond generation wavelet collocation method for evolution problems by Vasilyev is
discussed in [Vasilyev and Bowman (2000); Vasilyev (2003)].

In the conventional numerical approach to transient problems the accuracy
gained in using the high order spatial discretization is partially lost due to use
of low-order time discretization schemes. Here usually spatial approximation pre-
cedes the temporal discretization. On the contrary, the reversed order of discretiza-
tion can lead to better time accurate schemes with improved stability properties.
Lax and Wendroff demonstrated this idea in the finite difference context [Lax and
Wendroff (1960, 1962, 1964)] and has also been considered in conjunction with a
spatial representation of spectral type [Gazdag (1973)]. Later Donea [1984, 1987] has
used it in deriving a time accurate finite element scheme. Primarily their approach
consists of extending the Taylor series in the time increment to the third order
before spatial discretization. This procedure has not be implemented so far in the
wavelet approach to evolutionary problems where again spatial approximation is
known to precede the temporal discretization. In this paper we develop wavelet-
Taylor Galerkin method (W-TGM) for a class of linear problems like heat equation,
convective transport problem and non-linear hyperbolic conservation equation. We
next making use of space-time relation as in given PDEs suitably express the tem-
poral derivatives in spatial terms to propose a modified version of W-TGM called
W-TGMS. Further exploiting the beneficial effect of the consistent mass matrix in
a lumped-matrix context we also propose and implement a two-pass explicit ver-
sion of W-TGM call it twoW-TGM. A time accurate solution of Korteweg-de Vries
equation using wavelet Galerkin method is developed in [Kumar and Mehra].

The outline of paper is as follows. In Sec. 2 we summarize some basics of wavelet
analysis. In Sec. 3 we introduce W-TGM, twoW-TGM, W-TGMS for the solution
of time dependent PDEs. We describe this algorithm first for the heat equation and
then for convection equation and inviscid Burgers’ equation. In Sec. 4 we illustrate
the accuracy by providing the results of W-TGM along with known methods like
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wavelet Galerkin method (WGM), Lax-Wendroff and comparing them with the
exact solutions. In Sec. 5 we have studied numerically the stability of the algorithm
in these cases. Finally in Sec. 6 we draw a number of conclusion based on our results
and indicate directions of further investigation.

2. Wavelet Preliminaries

2.1. Compactly supported wavelets

The class of compactly supported wavelet bases was introduced by Daubechies in
1988. They are an orthonormal bases for functions in L2(R). A “Wavelet System”
consists of the function φ(x) and the function ψ(x) referred to as wavelet function.
We define translates of φ(x) as

φi(x) = φ(x − i). (1)

Multiresolution analysis (MRA) is the theory that was used by Ingrid Daubechies
to show that for any non negative integer n there exists an orthogonal wavelet with
compact support such that all the derivatives up to order n exist. MRA describes
a sequence of nested approximation spaces Vj in L2(R) such that closure of their
union equals L2(R). MRA is characterized by the following axioms

{0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · · ⊂ L2(R)

j=∞⋃
j=−∞

Vj = L2(R)

⋂
j∈Z

Vj = 0

f ∈ Vj if and only if f(2(·)) ∈ Vj+1

φ(x − k)k∈Z is an orthonormal basis for V0.

(2)

We define Wj to be the orthogonal complement of Vj in Vj+1, i.e. Vj ⊥ Wj and

Vj+1 = Vj + Wj , (3)

φj,k(x) = 2j/2φ(2jx − k)k∈Z is an orthonormal basis for Vj , ψj,k = 2j/2ψ(2jx −
k)k∈Z is an orthonormal basis for Wj . Each member of the wavelet family is deter-
mined by the set of constants ak (low pass filter) by the dilation equation

φ(x) =
√

2
D−1∑
k=0

akφ(2x − k), (4)

and the equation

ψ(x) =
√

2
D−1∑
k=0

bkφ(2x − k), (5)

where D is the order of wavelet and bk = (−1)kaD−1−k, k = 0, 1, . . . , D − 1.
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As pointed out by Meyer [1990] the complete toll box built in L2(R) can be
used in the periodic case L2([0, 1]) by introducing a standard periodization tech-
nique. This technique consists at each scale in folding, around the integer val-
ues, the wavelet ψj,k and the scaling functions φj,k centered in [0,1]. It writes
φ̃j,l(x) =

∑∞
n=−∞ φj,l(x + n) and ψ̃j,l(x) =

∑∞
n=−∞ ψj,l(x + n) and generates VPj

and WPj . A function f ∈ VPJ in pure periodic scaling function expansion f(x) =∑2j−1
k=0 cj

kφ̃j,k(x) and the periodic wavelet expansion f(x) =
∑2J0−1

k=0 cJ0
k φ̃J0,k(x) +∑J−1

j=J0

∑2j−1
k=0 dj

kψ̃j,k(x). Where J0 satisfy 0 ≤ J0 ≤ J and the decay of the wavelet
coefficient is given by the following theorem [Nilsen (1998)]:

Theorem
Let P = D/2 be the number of vanishing moments for a wavelet ψj,k and
let f ∈ CP (R). Then the wavelet coefficients decay as |dj,k| ≤ CP 2−j(P+ 1

2 )×
maxξ∈Ij,k

|f (P )(ξ)|.

3. Wavelet-Taylor Galerkin Method (W-TGM)

In Wavelet-Taylor Galerkin method the time discretization is performed before the
spatial discretization. This implies that the corrections due to Taylor series act at
the level of the spatially continuous differential equation. Thus the present method is
in contrast with other approaches wherein Taylor series or Pade rational expansions
in time are applied to the spatially discretized equations. It is clear that, due to the
presence of the consistent mass matrix (CMM) in the wavelet Galerkin equations
for transient problems, the proposed method offers substantial advantages in the
computational efficiency with respect to such Galerkin-Taylor alternatives. Consider
the equation of the form

ut = Lu + Nf(u) (6)

with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1 (7)

and with the suitable boundary condition. We explicitly separate evolution Eq. (6)
into a linear part, Lu and nonlinear part, Nf(u), where the operation L and N
are constant-coefficient differential operation that do not depend upon time t. The
function f(u) is nonlinear. A simple example of Eq. (6) is the classical diffusion (or
heat) equation

ut = νuxx, ν > 0. (8)

Remark. Although we do not address multidimensional problems in this paper, we
note that the Navier-Stokes equations may also be written in the form (6). Consider

ut +
1
2
[u · ∇u + ∇(u · u)] = ν∇2u −∇p, (9)
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where

divu = 0, (10)

and p denotes the pressure. Applying divergence operator to both sides of (9) and
using (10), we obtain

∆p = f(u), (11)

where f(u) = − 1
2∇[u · ∇u + ∇(u · u)] is a nonlinear function of u. Equation (6) is

formally obtained by setting

Lu = ν∇2u (12)

and

Nf(u) =
1
2
[u · ∇u + ∇(u · u)] −∇(∆−1f(u)). (13)

A one-dimensional model that may be thought of as a prototype for the Navier-
Stokes equation is

ut = H(u)u. (14)

where H(·) is the Hilbert transform. The presence of the Hilbert transform in (14)
introduces a long-range interaction which models that found in the Navier-Stokes
equations.

3.1. W-TGM for heat equation

We consider now the periodic initial-value problem for the heat equation. For heat
equation L = ν ∂2

∂2
x
, then equation becomes

ut = νuxx + f(x), t > 0

u(x, 0) = h(x), 0 ≤ x ≤ 1

u(x, t) = u(x + 1, t), t ≥ 0,

(15)

where ν is a positive constant, f(x) = f(x + 1) and h(x) = h(x + 1).

3.1.1. Scheme based on forward (or Euler) time stepping

Let us first leave the spatial variable x continuous and discretize only the time to
obtain the Euler scheme:

un+1 − un

∆t
= νun

xx + f(x). (16)

We are expressing the difference approximation to ut at time level n by forward-time
Taylor series expansion, including second and third time derivatives, which gives

(ut)n =
un+1 − un

∆t
− ∆t

2
un

tt −
∆t2

6
un

ttt − O(∆t3). (17)
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3.1.2. Scheme with a mixed temporal spatial correction (W-TGM)

Now, successive differentiations of Eq. (15) indicate that

utt = ν2uxxxx + νf ′′(x) and uttt = ν2(ut)xxxx (18)

combining Eqs. (17) and (18), the semi-discrete equation (16) is replaced by the
following equation:

un+1 − un

∆t
− ν2∆t2

6
(ut)n

xxxx = νun
xx +

ν2∆t

2
un

xxxx + ν
∆t

2
f ′′(x) + f(x). (19)

In Eq. (19), the term involving uxx is not an additional artificial diffusion term, but
part of the difference approximation to un

t . Whereas the adopted mixed form simply
leads to modify the usual CMM. This is achieved by replacing un

t in equation (19)
by (un+1−un)/∆t, so that after applying wavelet Galerkin method (19) transforms
into the following schemes:(

I − ν2∆t2

6
D(4)

) (
cn+1
u − cn

u

)
= ν∆tD(2)cn

u +
ν2∆t2

2
D(4)cn

u +
ν∆t2

2
df ′′ + ∆tdf ,

(20)

where cu denote the vector of scaling function coefficients corresponding to u and
df , df ′′ is given by denote the vector of scaling function coefficients corresponding to
f and f ′′. We will refer to the matrix D(d) as the differentiation matrix of order d.
Derivation of matrix Dd is given in [Nilsen (1998)].

3.1.3. Scheme with spatial correction (W-TGMS)

The term utt can also be expressed in a purely spatial form. By noticing that

uttt = ν3uxxxxxx + ν2f ′′′′(x), (21)

the Taylor series expansion finally provides

un+1 − un

∆t
= νun

xx +
ν2∆t

2
un

xxxx +
ν3∆t2

6
uxxxxxx

+
ν2∆t2

6
f ′′′′ + ν

∆t

2
f ′′(x) + f(x). (22)

The Galerkin discretization scheme gives

(cn+1
u − cn

u) = ν∆tD(2)cn
u +

ν2∆t2

2
D(4)cn

u +
ν3∆t3

6
D(6)cn

u

+
ν2∆t3

6
df ′′′′ +

ν∆t2

2
df ′′ + ∆tdf . (23)

Remark 1.
Here it may noted that in the finite element context terms such as (ut)n

x , (ut)n
xx etc.

are left in the spatial-temporal form because the elimination of ut through given
PDE would introduce higher-order spatial derivatives. This would preclude the use
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of finite elements with C0-continuity (Lagrange family). Also the Taylor Galerkin
schemes are usually limited to second-order time derivatives for high order PDEs.
Such difficulties are not encountered here in our W-TGM approach. However, in
W-TGM specially while using schemes like W-TGMS one has to carefully choose
D as per the basic results of [Eirola (1992)] to account for the differentiability of φ.

Remark 2.
When we are using W-TGM, the presence of a CMM is an explicit time stepping
scheme represents a serious disadvantage from the point of view of the computa-
tional efficiency of the method. It has been also shown that it is possible to exploit
the beneficial effect of the CMM in a lumped-explicit context. This may be achieved
by using a two-pass explicit procedure, we will refer to this scheme as twoW-TGM.
This twoW-TGM procedure for the W-TGM scheme (20) would read as:

(cn+1
u − cn

u)(1) = ν∆tD(2)cn
u +

ν2∆t2

2
D(4)cn

u +
ν∆t2

2
df ′′ + ∆tdf

(cn+1
u − cn

u)(2) = (cn+1
u − cn

u)(1) +
ν2∆t2

6
D(4)(cn+1

u − cn
u)(1).

(24)

3.1.4. Scheme based on leap-frog time stepping

Now replace the time derivative with the standard leap-frog discretization.
This gives

un+1 − un−1

2∆t
= νun

xx + f(x). (25)

The use of centered difference to discretize the right-hand side of Eq. (25) produces
a method which is second-order accurate in space and time. To obtain an improved
order of accuracy in ∆t we shall apply a Taylor-Galerkin method based on the
following forward and backward time expansions.

un+1 = un + ∆tun
t +

∆t2

2
un

tt +
∆t3

6
un

ttt + O(∆t4)

un−1 = un − ∆tun
t +

∆t2

2
un

tt −
∆t3

6
un

ttt + O(∆t4)
(26)

from which we deduce an improved approximation to the temporal derivative at
time t = n∆t in the form

un
t =

un+1 − un−1

2∆t
− ∆t2

6
un

ttt. (27)

Now with this improved approximation in to left-hand side of Eq. (25), followed
by substitution of the third time-derivative with the mixed form in Eq. (27), the
associated wavelet-Galerkin equations are(

I − ν2∆t2

6
D(4)

) (
cn+1
u − cn−1

u

)
= 2ν∆tD(2)cn

u + 2∆tdf . (28)
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Here W-TGMS scheme becomes

(
cn+1
u − cn−1

u

)
= 2ν∆tD(2)cn

u +
ν3∆t3

3
D(6)cn

u +
ν2∆t3

3
df ′′′′ + 2∆tdf . (29)

Here twoW-TGM procedure for the W-TGM scheme (28) would read as:

(cn+1
u − cn−1

u )(1) = 2ν∆tD(2)cn
u + 2∆tdf

(cn+1
u − cn−1

u )(2) = (cn+1
u − cn−1

u )(1) +
ν2∆t2

6
D(4)(cn+1

u − cn−1
u )(1).

(30)

3.1.5. Scheme based on Crank-Nicolson (CN) time stepping

The standard Crank-Nicolson discretization gives

un+1 − un

∆t
=

1
2
ν(un

xx + un+1
xx ) + f(x). (31)

If a central difference is employed to discretize the spatial term, the method is
unconditionally stable and second-order accurate in space and time. To obtain an
improved order of accuracy in ∆t we shall apply a Taylor-Galerkin method based
on the following Taylor series expansions:

un+1 = un + ∆tun
t +

∆t2

2
un

tt +
∆t3

6
un

ttt + · · ·

un = un+1 − ∆tun+1
t +

∆t2

2
un+1

tt − ∆t3

6
un+1

ttt + · · ·
(32)

Combination of these two gives

un+1 − un

∆t
=

1
2
(un

t + un+1
t ) +

∆t

4
(un

tt − un+1
tt ) +

∆t2

12
(un

ttt + un+1
ttt ) (33)

replacing the time derivatives by spatial derivatives, the associated wavelet Taylor-
Galerkin equations based on CN time stepping scheme are(

I − ν2∆t2

6
D(4)

) (
cn+1
u − cn

u

)
=

ν∆t

2
D(2)

(
cn
u + cn+1

u

)
+

ν2∆t2

4
D(4)

(
cn
u − cn+1

u

)
+ ∆tdf . (34)

Here W-TGMS scheme becomes

(
cn+1
u − cn

u

)
=

ν∆t

2
D(2)(cn

u + cn+1
u ) +

ν2∆t2

4
D(4)(cn

u − cn+1
u )

+
ν3∆t3

12
D(6)

(
cn
u + cn+1

u

)
+

ν2∆t3

6
df ′′′′ + ∆tdf . (35)
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3.2. W-TGM for inviscid Burgers equation (quasilinear hyperbolic

conservation equation)

For inviscid Burgers equation Nf(u) = u∂u
∂x , then equation becomes

ut + uux = 0. (36)

A second-order Taylor-Galerkin method is used to obtain a discrete approximation
of (36). The equation is first discretized in time by considering a Taylor series
expansion in the time step ∆t = tn+1 − tn up to second order

(un
t ) =

un+1 − un

∆t
− ∆t

2
un

tt − O(∆t2). (37)

The first-order and second-order time derivative in (37) are then expressed from
the governing Eq. (36) in the form

ut = −uux

utt = −utux − uuxt.
(38)

Now with this improved approximation in to left side of Eq. (36), followed by
substitution of the second time-derivative with the mixed form in Eq. (37), the
semi discrete equation is

un+1 − un

∆t
= −unun

x +
∆t

2

[
−

(
un+1 − un

∆t

)
ux − u∂x

(
un+1 − un

∆t

)]
, (39)

where spatial discretization is done by WGM.

4. Results of Numerical Experiments

The Lax-Wendroff spatial discretization will be performed on a spatial grid. Let
xi = i∆x, where ∆x = 1/N and i = 0, 1, . . . , N − 1, N = 2j.

4.1. Accuracy results

The error produced by the numerical schemes was measured against the values of
the analytical solution ue by the L∞ norm calculated as

‖u‖L∞ = max
k=0,1,...,2j−1

|u(k/(2j))|.

4.2. Heat equation

We have tested W-TGM on heat equation with different set of initial condition and
different value of function f(x).

Case 1: h(x) = 0, f(x) = sin(2πx)
In Tables 1(a–c) errors in L∞ norm of the solution obtained by W-TGM scheme,

W-TGMS and twoW-TGM are compared with those resulting from Lax-Wendroff
scheme and WGM. Results in Table 1(a) correspond to the computations with
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Table 1. Accuracy of results given by the L∞ norm using Euler time stepping scheme.

(a)

j ∆t Lax-Wendroff WGM W-TGM twoW-TGM W-TGMS

4 0.0005(0.01) 3.178 × 10−6 3.138 × 10−7 1.3113 × 10−11 1.457 × 10−11 1.938 × 10−11

6 0.0005(0.01) 3.142 × 10−6 3.138 × 10−7 3.816 × 10−17 2.498 × 10−16 6.247 × 10−12

7 0.0005(0.01) 3.140 × 10−6 3.138 × 10−7 1.509 × 10−16 1.2663 × 10−16 6.247 × 10−12

(b)

j ∆t Lax-Wendroff WGM W-TGM twoW-TGM

4 0.005(0.1) 3.161 × 10−4 2.907 × 10−5 1.99 × 10−6 1.99 × 10−6

6 0.005(0.1) 3.125 × 10−4 3.103 × 10−5 9.709 × 10−9 9.709 × 10−9

7 0.005(0.1) 3.123 × 10−4 3.103 × 10−5 9.431 × 10−10 9.304 × 10−10

(c)

j ∆t Lax-Wendroff WGM W-TGM twoW-TGM

4 0.05(1) 0.03 0.0026 2.073 × 10−4 2.073 × 10−4

6 0.05(1) 0.0297 — 3.04 × 10−5 2.8 × 10−6

7 0.05(1) — — 2.53 × 10−5 —

D = 10 and those in Tables 1(b) and 1(c) correspond to D = 6. In the table the
notation .x(.y) would mean that the target time ‘.y’ is reached by time marching
with step size of ‘.x’. Further a ‘—’ in the table denotes that the scheme is unstable.
For Euler time stepping our schemes exhibit higher accuracy in comparison to other
methods. It is also to be noted from Table 1(c) that while W-TGM permit larger
time stepping, Lax-Wendroff and WGM are seen to get unstable.

Tables 2(a–c) depict that under leap-frog time stepping to our wavelet-Taylor
Galerkin schemes are superior to WGM and Lax-Wendroff methods. Also it is to
be noted that under leap-frog time stepping W-TGMS approach gets as accurate
as W-TGM and twoW-TGM. Here, results in Table 2(a) correspond to the compu-
tations with D = 10 and those in Tables 2(b) and 2(c) correspond to computations
with D = 6.

The accuracy of the W-TGM and W-TGMS based on CN time stepping are
compared in Tables 3(a–c) with WGM and Lax-Wendroff method. Note that our
schemes under CN time marching strategy will again lead to better accuracy in
numerical solution.

Case 2: Let us consider f(x) = 0 and following initial condition

h(x) =

{
x 0 ≤ x ≤ 1

2

1 − x 1
2 ≤ x ≤ 1

(40)

that has a discontinuous derivative at x = 1
2 . In Figs. 1(a–b) solution to the problem

for ∆t = 0.0005, ∆x = 2−4 and ν = 1 by FD and Lax-Wendroff methods are
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Table 2. Accuracy of results given by the L∞ norm using leap-frog time stepping scheme.

(a)

j ∆t Lax-Wendroff WGM W-TGM twoW-TGM W-TGMS

4 0.0005(0.01) 8.026 × 10−8 4.262 × 10−11 1.628 × 10−11 1.628 × 10−11 1.631 × 10−11

6 0.0005(0.01) 5.031 × 10−9 2.631 × 10−11 2.897 × 10−16 2.862 × 10−16 2.949 × 10−16

7 0.0005(0.01) 1.251 × 10−9 2.631 × 10−11 2.949 × 10−17 2.949 × 10−17 2.949 × 10−17

(b)

j ∆t Lax-Wendroff WGM W-TGM twoW-TGM

4 0.005(0.1) 7.957 × 10−5 2.093 × 10−6 2.067 × 10−6 2.067 × 10−6

6 0.005(0.1) 4.905 × 10−7 3.467 × 10−8 8.487 × 10−9 8.486 × 10−9

7 0.005(0.1) 1.155 × 10−7 −(0.0093) −(6.81 × 10−4) 2.143 × 10−4

(c)

j ∆t Lax-Wendroff WGM W-TGM twoW-TGM

4 0.05(1) 7.3 × 10−4 2.174 × 10−4 1.926 × 10−4 1.926 × 10−4

6 0.05(1) — — −(1.30) 8.141 × 10−4

7 0.05(1) — — — —

Table 3. Accuracy of results given by the L∞ norm using Crank-Nicolson time stepping scheme.

(a)

j ∆t Lax-Wendroff WGM W-TGM W-TGMS

4 0.0005(0.01) 8.026 × 10−8 1.632 × 10−11 2.2903 × 10−11 2.293 × 10−11

6 0.0005(0.01) 5.0342 × 10−9 3.286 × 10−12 3.139 × 10−16 6.576 × 10−12

7 0.0005(0.01) 1.254 × 10−9 3.286 × 10−12 2.776 × 10−17 6.576 × 10−12

(b)

j ∆t Lax-Wendroff WGM W-TGM

4 0.005(0.1) 7.96 × 10−6 2.063 × 10−6 2.067 × 10−6

6 0.005(0.1) 4.938 × 10−7 5.179 × 10−9 8.31 × 10−9

7 0.005(0.1) 1.186 × 10−7 2.721 × 10−9 5.207 × 10−10

(c)

j ∆t Lax-Wendroff WGM W-TGM

4 0.05(1) 7.338 × 10−4 1.889 × 10−4 1.975 × 10−4

6 0.05(1) 4.062 × 10−5 2.120 × 10−6 7.563 × 10−7

7 0.05(1) 5.806 × 10−6 2.852 × 10−6 4.365 × 10−8
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Fig. 1. Solution of heat equation (a) FD (b) Lax-Wendroff method with ∆t = 0.0005, ∆x = 2−4

and ν = 1 at t = 0.05.
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Fig. 2. Solution of heat equation using WGM based on Euler time stepping scheme with ∆t =
0.0005, J = 4 and ν = 1 at t = 0.05.

presented. Figures 2 and 3 represent the corresponding solution to the problem as
obtained by WGM and W-TGM. Here one can note that the solution due to our
W-TGM gets smooth quicker indicating a faster decay of sharp peak in the initial
condition.

Figure 4 illustrates the evolution of (40) by FD based Crank-Nicolson scheme
for ∆t = 0.0005, ∆x = 10−6 and ν = 1 and the slow decay of high frequency
components of the initial condition. We have implemented our W-TGM scheme
under CN time stepping for the same problem and display the result in Fig. 5 for
J = 6. Here one can note that there is a proper decay of the sharp peak in the
initial condition.

4.3. Convection equation

Consider the scalar convection equation in one dimension. For convection equation
L = a ∂

∂x
, then equation becomes

ut = aux, (41)

where a is positive constant. The accuracy of the proposed W-TGM for hyper-
bolic problems has been verified numerically first on the classical test problem of
convection of Gaussian profile.



April 20, 2005 14:46 WSPC/IJCM-j050 00037

88 B. V. R. Kumar & M. Mehra

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

u(
x,

t)

Fig. 3. Solution of heat equation using W-TGM based on Euler time stepping scheme with ∆t =
0.0005, J = 4 and ν = 1 at t = 0.05.

We assume that the solution is periodic of some large period for instance say,
four. A comparison of the solution obtained by WGM and W-TGM with the exact
solution is made in Figs. 6(a–b) respectively illustrates the relative superiority of
W-TGM with hyperbolic equation. In addition L∞-norm of the errors in solution
due to W-TGM, twoW-TGM and WGM under Euler and leap-frog time stepping
schemes shown in Tables 4(a–b) depict the stability and accuracy of our schemes.

4.4. Inviscid Burgers’ equation

Here we are showing numerical results for the inviscid Burgers’ equation with two
different set of initial condition to illustrate the applicability of proposed W-TGM
scheme in nonlinear context.

Case 1:
In this case we compute the solution using initial condition

u(x, 0) = sin(2πx). (42)

In this case to begin with we find the solution of undamped wave equation with
initial condition (42) and imposed periodic boundary conditions. In Figs. 7(a–b) we
present the solutions due to FD scheme and W-TGM under Euler time stepping



April 20, 2005 14:46 WSPC/IJCM-j050 00037

Wavelet-Taylor Galerkin Method 89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

u(
x,

t)

Fig. 4. Solution of heat equation using finite difference based on CN time stepping scheme with
∆t = 0.0005, ∆x = 2−6 and ν = 1 at t = 0.05.

scheme. While solution due to FD scheme develops local oscillations, the solution
due to W-TGM continues to be smooth.

Case 2:
Here we are using initial condition

u(x, 0) =
{

1 + x −1 ≤ x ≤ 0
1 − x 0 ≤ x ≤ 1.

(43)

We determine solution of undamped wave equation with an initial triangular wave
(43) and imposed periodic boundary conditions. The exact solution of this problem
in the domain −1 ≤ x ≤ 1 with u(−1, t) = 0 predicts an infinitely steep gradient at
x = 1 at time t = 1 and the area under the initial curve remains constant for all time.
The numerical solution by W-TGM under Euler time stepping scheme presented
in Fig. 8(a) agrees with the exact solution until t = 0.90 when mild oscillations
appear in solution indicating the presence of steep gradient (shock) as predicted
by the exact solution at t = 1. However, it is to be noted that these oscillations
are confined to the vicinity of the shock and not felt in other parts of the domain.
It is known [Restrepo and Leaf (1995)] that the Fourier bases produce oscillations
which are present throughout the domain. In Fig. 8 (b) solution to the problem by
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Fig. 5. Solution of heat equation using W-TGM based on CN time stepping scheme with ∆t =
0.0005, j = 6 and ν = 1 at t = 0.05.
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Fig. 6. Solution of convection equation based on Euler time stepping scheme (a) WGM scheme
(b) W-TGM scheme (−, exact, . . . , ∆t = 0.01).
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Table 4. Accuracy of results given by the L∞ norm.

(a) (using Euler time stepping)

j ∆t WGM W-TGM twoW-TGM

4 0.01(0.5) 0.0861 0.0023 0.0023
6 0.01(0.5) — 5.227 × 10−5 5.242 × 10−5

(b) (using leap-frog time stepping)

j ∆t WGM W-TGM twoW-TGM

4 0.01(0.5) 0.0214 0.0210 0.0210
6 0.001(0.05) 0.0021 0.0021 0.0021
6 0.0001(0.05) 2.101 × 10−4 2.101 × 10−4 2.101 × 10−4
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Fig. 7. Solutions of inviscid Burgers’ equation at various time step with ∆t = 0.005. Left: By finite
difference method taking ∆x = 26. Right: By W-TGM scheme taking j = 6.

Fourier-Galerkin method is provided. Here the occurrence of a steep gradient gives
rise to well marked global oscillations around t = 0.7.

5. Theoretical Stability of the Linearized Schemes

We use the notion of asymptotic stability of a numerical method as it is defined in
[Canuto et al. (1988)] for a discrete problem of the form

dU

dt
= LU,

where L is assumed to be a diagonalizable matrix.
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Fig. 8. Left: Local oscillation near shock. Right: Global oscillation in Fourier-Galerkin solution.

Definition
The region of absolute stability of a numerical method is defined for the scalar
model problem

dU

dt
= λU

to be the set of all λ∆t such that ‖Un‖ is bounded as t → ∞. Finally we say
that a numerical method is asymptotically stable for a particular problem if, for
sufficiently small ∆t > 0, the product of ∆t times every eigenvalue of L lies within
the region of absolute stability.

Forward (Euler) scheme:
The region of absolute stability for this scheme is the circle of radius 1 and center
(−1,0).

Leap-Frog scheme:
The stability condition for this scheme is that λ∆t be on the imaginary axis and
that |λ∆t| ≤ 1.

Crank-Nicolson scheme:
This method is absolute stable in entire left-half plane.

5.1. Stability for heat equation

We consider the heat equation

ut = νuxx.
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Fig. 9. Absolute stability region for forward Euler and ∆t times the eigenvalues of L4 for Daube-
chies scaling functions, where ∆t = 0.0005, ν = 1, left for D = 6, right for D = 16.

For W-TGM based on Euler time stepping Lj be the matrix defined as: Lj = A−1
j Bj

where Aj = I − ν2∆t2

6 D(4), Bj = νD(2) + ν2∆t
2 D(4), so that the discretized Heat

equation becomes

dcu

dt
= Ljcu.

Figure 9 shows the absolute stability region based on Euler time stepping
together with the position of the ∆tλL(i) for Daubechies scaling functions, with
some ∆t which should satisfy the stability condition. The region of absolute stabil-
ity for W-TGM based on CN time stepping scheme are plotted in Fig. 10.

5.2. Stability for convection equation

ut = aux.

Here for W-TGM based on Euler time stepping Lj is defined by Lj = A−1
j Bj , where

Aj = I − a2∆t2

6 D(2), Bj = aD(1) + a2∆t
2 D(2). Table 5 shows the asymptotic stability

condition for j = 4, 6 in an Euler scheme.
Figures 11 and 12 shows the stability region of W-TGM based on Euler and

leap-frog time stepping scheme.

5.3. Stability for inviscid linearized Burgers’ equation

We consider the linearized inviscid Burgers equation

ut + αux = 0,

where the linearization coefficient α stands for the value of u. Because at the initial
time u0(x) = sin(2πx), and because the amplitude of u decreases with time, we
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Fig. 10. For Crank-Nicolson scheme ∆t times the eigenvalues of L6 for Daubechies scaling functions,
∆t = 0.0005.

Table 5.

j No. of nodes Stab. cond.

4 16 ∆t ≤ 0.11
6 64 ∆t ≤ 0.01
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Fig. 11. Absolute stability region for forward Euler and ∆t times the eigenvalues of Lj for
Daubechies scaling functions, where ∆t = 0.01, left for j = 4, right for j = 6.
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Fig. 12. Absolute stability region for leap-frog and ∆t times the eigenvalues of Lj for Daubechies
scaling functions, left for ∆t = 0.01, j = 4 and right for ∆t = 0.001, j = 6.
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Fig. 13. Absolute stability region for Euler time stepping and ∆t times the eigenvalues of Lj for
Daubechies scaling functions, for ∆t = 0.005, j = 6.

assume throughout that |α| ≤ 1. Here also Lj = Aj
−1Bj , where Aj = I + α∆t

2 D(1),
Bj = −αD(1), so that the discretized linearized Burgers’ equation becomes

dcu

dt
= Ljcu.

Figure 13 shows the absolute stability region for this scheme.
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6. Conclusion

A set of stable and efficient numerical schemes called wavelet-Taylor Galerkin meth-
ods namely W-TGM, W-TGMS and twoW-TGM for parabolic and hyperbolic
PDEs are introduced. The precedence of time discretization to space discretization
and the use of Taylor-series up to third order in approximating time derivatives
in conjunction with wavelet bases for expressing spatial terms renders robustness
to the proposed schemes and makes them space and time accurate. Under Euler,
leap-frog, CN time marching approaches our schemes W-TGM, twoW-TGM and
W-TGMS are superior to WGM and Lax-Wendroff methods for parabolic equa-
tion i.e. heat transfer equation. In several instances while WGM and Lax-Wendroff
get unstable, our methods remain stable and robust. With hyperbolic equations
like convection equation and inviscid Burgers’ equation W-TGM leads to superior
and stable solution in comparison to FD, Lax-Wendroff, WGM etc. In dealing with
unperturbed wave equation in −1 ≤ x ≤ 1 whose solution is known to develop steep
gradient (or shock) at x = 1, while conventional Fourier Galerkin method leads to
global oscillations in the solution, W-TGM gives raise to stable solution with mild
oscillations highly localized to shock zone. In effect, we find that our wavelet-Taylor
Galerkin methods lead to a stable and space time accurate solutions. Though the
current implementations deal with one dimensional problems, the proposed meth-
ods are directly extendable to higher dimensions including to non-linear problems
such as Navier-stokes equations. Further the methods are highly amendable to par-
allelization. Currently work is in progress in these two directions.
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