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In this paper, we propose a wavelet-Taylor–Galerkin method for solving the two-
dimensional Navier–Stokes equations. The discretization in time is performed before
the spatial discretization by introducing second-order generalization of the standard
time stepping schemes with the help of Taylor series expansion in time step. Wavelet-
Taylor–Galerkin schemes taking advantage of the wavelet bases capabilities to compress
both functions and operators are presented. Results for two-dimensional turbulence are
shown.
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1. Introduction

Turbulent flows are a grand challenge for numerical simulation. In such flows, there
is a large range of active and important scales which all need to be resolved by
a numerical mesh. It concerns practical purpose such as industrial or meteorolog-
ical computations, as well as fundamental studies. Direct numerical simulation of
turbulence requires the integration in time of the nonlinear Navier–Stokes equa-
tions. However, at a large Reynolds number, that is when nonlinear interactions
are far dominant upon viscous effects, turbulent flows generate increasingly small
scales. In consequence to be realistic, the discretization in space ought to handle a
huge number of degrees of freedom. In dimension two, direct numerical simulation
of homogeneous turbulent flows in the incompressible case can be performed up to
quite large Reynolds numbers by way of spectral Fourier techniques. However, these
Reynolds numbers are too low to compare to large scale atmospheric dynamics. The
situation is much more difficult in dimension three where only moderate Reynolds
are at hand even with the present largest supercomputers. In current approaches,
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the fine scales of the flow are replaced by a subgrid scale model, e.g., in Large Eddy
Simulation (LES), using a linear cut-off filter which therefore does not depend on
the actual flow realization.

Another property of turbulent flows is their strong intermittency. Turbulent
flows are characterized by coherent structures, like vortex tubes or vortex sheets,
which govern the dynamics and statistics of the flow. It is, therefore, quite intu-
itive to try to concentrate the numerical work on these structures since the coher-
ent structures are spatially localized. From this property, one may dream on new
basis functions more suitable to represent this intermittent spatial structure with
only a few number of degrees of freedom. Wavelet methods have been associated,
almost since their invention, to analyze the structure and dynamics of the flow.1

These studies have shown that the strongest modes of the wavelet transform of
a two-dimensional turbulent flow represent the coherent structure (e.g., vortices),
the coherent vortices can be well represented by only a few wavelet modes. These
observations suggest that wavelets could be an efficient basis for two-dimensional
turbulent flows since the dynamics of such flows are largely controlled by their
coherent vortices. From the mathematical properties of wavelet bases, where a field
has a singularity of a given order, its wavelet coefficients at small scales grow at
a related power of the scale.2,3 This means that at a given scale, the number of
degrees of freedom needed no longer depends on the scale itself but on the number
of active singularities of the field at this scale. This property which comes from the
double localization, in space and in scale, of the wavelets, has been used for analysis
and compression of turbulent fields.4 From a numerical point of the view, wavelets
constitute optimal bases to represent functions with inhomogeneous regularity, such
as intermittent turbulent flow fields.

In the conventional numerical approach to transient problems, the accuracy
gained in using the high-order spatial discretization is partially lost due to the use of
low-order time discretization schemes. Here, usually spatial discretization precedes
the temporal discretization. On the contrary, the reversed order of discretization can
lead to better time accurate schemes with improved stability properties. The fun-
damental idea behind the Taylor–Galerkin approach is the substitution of space
derivatives for the time derivatives in Taylor series, as used in the derivation
of the Lax–Wendroff method,5 where in Taylor–Galerkin matrix resulting from
wavelet Galerkin discretization, we are taking the advantage of wavelet com-
pression because coherent structure is well represented by few non-zero wavelet
modes.

The remainder of this paper is organized as follows. In the next section, we
give a brief introduction to wavelets. In Sec. 3, we present the wavelet-Taylor–
Galerkin method for advection-diffusion problem. In Sec. 4, the details of time-
accurate pseudo-wavelet schemes for Navier–Stokes are given. In Sec. 5, we present
the numerical results for linear advection-diffusion equation and for two-dimensional
turbulence, the merger of two positive vortices pushed together by a weaker negative
vortex. Conclusions are presented in Sec. 6.
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2. Wavelet Preliminaries

In the following, we give a brief introduction to wavelets and our notation used.
We first deal with one-dimensional wavelets and then consider two variants for its
generalization to the multivariate case.

2.1. Univariate wavelets

A “Wavelet System” consists of the function φ(x) and the function ψ(x) referred
to as wavelet functions. We define translates of φ(x) as

φi(x) = φ(x − i). (2.1)

Multiresolution analysis (MRA) is the theory that was used by Daubechies6 to
show that for any non-negative integer n, there exists an orthogonal wavelet with
compact support such that all the derivatives up to order n exist. MRA describes
a sequence of nested approximation spaces Vj in L2(R) such that closure of their
union equals L2(R). MRA is characterized by the following axioms:

(i) {0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · · ⊂ L2(R),
(ii)

⋃j=∞
j=−∞ Vj = L2(R),

(iii)
⋂

j∈Z Vj = 0,
(iv) f ∈ Vj if and only if f(2(·)) ∈ Vj+1,
(v) φ(x − k)k∈Z is an orthonormal basis for V0.

We define Wj to be the orthogonal complement of Vj in Vj+1, i.e. Vj ⊥ Wj and

Vj+1 = Vj + Wj . (2.2)

φj,k(x) = 2j/2φ(2jx − k)k∈Z is an orthonormal basis for Vj and φ is the solution of
so-called scaling equation

φ(x) =
√

2
D−1∑
k=0

akφ(2x − k) (2.3)

with explicitly known coefficients ak (lowpass filter). An analytical description of
φ is not available, but it is also not needed. Wavelets are also dilates/translates
of a single function ψ such that ψj,k = 2j/2ψ(2jx − k)k∈Z is an orthonormal basis
for Wj . As pointed out by Meyer (1990), the complete toll box built in L2(R)
can be used in the periodic case L2([0, 1]) by introducing a standard periodiza-
tion technique. This technique consists at each scale in folding, around the inte-
ger values, the wavelet ψj,k and the scaling functions φj,k centered in [0,1]. It
writes φ̃j,l(x) =

∑∞
n=−∞ φj,l(x + n) and ψ̃j,l(x) =

∑∞
n=−∞ ψj,l(x + n) and gen-

erates VPj and WPj . A function f ∈ VPJ in pure periodic scaling function

expansion f(x) =
∑2J−1

k=0 cJ
k φ̃J,k(x) and the periodic wavelet expansion f(x) =∑2J0−1

k=0 cJ0
k φ̃J0,k(x) +

∑J−1
j=J0

∑2j−1
k=0 dj

kψ̃j,k(x), where J0 satisfy 0 ≤ J0 ≤ J and the
decay of the wavelet coefficient is given by the following theorem.8
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Theorem 2.1. Let P = D/2 be the number of vanishing moments for a
wavelet ψj,k and let f ∈ CP (R). Then, the wavelet coefficients decay as |dj,k| ≤
CP 2−j(P+ 1

2 ) maxξ∈Ij,k
|f (P )(ξ)|.

2.2. Multivariate wavelets

The simplest way to obtain multivariate wavelets is to employ anisotropic or
isotropic tensor products.

(MRA-d) Here, the multivariate wavelets are defined by

ψj,l(x) := ψ(j1,l1)(x1) . . . ψjd,ld(xd), j := (j1, . . . , jd), x, l analogous.

(MRA) Here, anisotropy is avoided. The scaling functions are simply the tensor
products of the univariate scaling functions. A two-dimensional MRA
can be constructed from the following decomposition:

V j = Vj ⊗ Vj = (Vj−1 ⊕ Wj−1) ⊗ (Vj−1 ⊕ Wj−1)

= (Wj−1 ⊗ Wj−1) ⊕ (Wj−1 ⊗ Vj−1) ⊕ (Vj−1

⊗Wj−1) ⊕ Vj−1 ⊗ Vj−1

= W j−1 ⊕ V j−1.

Then, we have V J = W J−1 ⊕ · · · ⊕ W 0 ⊕ V 0. The wavelet basis is given by

{ψj,k ⊗ ψj,l, ψj,k ⊗ φj,l, φj,k ⊗ ψj,l}k,l∈Z,0≤j≤J−1 ∪ {φ0,k ⊗ φ0,l}k,l∈Z .

We have used this MRA approach in our two-dimensional problem.

3. Wavelet-Taylor–Galerkin Method (W-TGM)

First to show our methodology, we are taking simple linear advection-diffusion
equation ∂tu = −a∂xu + ν∂2

xu where a and ν > 0 are positive constant coefficients.
We have used second-order W-TGM because too many terms are introduced

in the third-order time derivative term, especially for nonlinear problems. This
difficulty may be circumvented by the use of fractional-step approach7 in which
the advection-diffusion problem is decomposed into a pure advection problem fol-
lowed by a pure diffusion problem. Where the advection phase may be treated
by third-order W-TGM. Let us leave the spatial variable x continuous and dis-
cretize advection-diffusion equation in time by the following forward Taylor series
expansion. To obtain an improved order of accuracy in δt we shall apply a
Taylor–Galerkin method based on the following Taylor series expansions

un+1 = un + δtun
t +

δt2

2
un

tt + · · · , (3.1)
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un = un+1 − δtun+1
t +

δt2

2
un+1

tt + · · · . (3.2)

Combination of these two gives

un+1 − un

δt
=

1
2
(
un

t + un+1
t

)
+

δt

4
(
un

tt − un+1
tt

)
(3.3)

replacing the time derivatives by spatial derivatives, the associated wavelet-Taylor–
Galerkin equations based on Crank Nicolsan (CN) time stepping scheme which
includes first-order and second-order time derivatives. While the former is provided
directly by governing PDE, the latter can be obtained by taking the time derivative
of the governing PDEs. The time derivative is

utt = −a2∂2
xu − 2av∂3

xu + v2∂4
xu (3.4)

and the substitution of ut and utt into the Taylor series expansion (3.3) gives
W-TGM scheme

Aun+1 = Bun (3.5)

where A = I − δt
2

(−a∂xun + ν∂2
x

)
+ δt2

4

(−a2∂2
xu − 2av∂3

xu + v2∂4
xu

)
and B =

I + δt
2

(−a∂x + ν∂2
x

)
+ δt2

4

(−a2∂2
xu − 2av∂3

xu + v2∂4
xu

)
. Now, wavelet-Galerkin dis-

cretization turns the problem into a finite-dimensional space.

dn+1
u = A−1Bdn

u = Ddn
u. (3.6)

In this finite-dimensional space, un is to be replaced by the vector dn
u along a wavelet

finite basis, and A and B are replaced by, respectively, A and B (finite) matrices.
Due to second- and third-order terms in the Taylor series, our scheme leads to an
implicit method that needs inversion. Now, to solve Eq. (3.6) in the wavelet basis,
we will compute A−1 and A−1B once and store in compressed form. We can now
give a computational procedure for computing (3.6) using wavelet compression.

Algorithm 1

(i) trunc(A−1, εM ) ��� (A−1)εM

(ii) compute initial guess in wavelet basis ��� d0
u

(iii) trunc(d0
u, εV ) ��� (d0

u)εV

(iv) for n = 0, 1, . . . , n1 − 1
(v) (A−1)εMB(dn

u)εV ��� dn+1
u

(vi) trunc(dn+1
u , εV ) ��� (dn+1

u )εV

(vii) endfor,

where trunc(du, εV ) = {dj
k, |dj

k| > εV } and trunc(A, εM ) = {[Am,n], [Am,n] > εM}.
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A further property of the wavelet representation of operators is that the suc-
cessive powers Dn of the time iteration matrix become sparser and sparser with
increasing n. This property is very specific to wavelets, as the opposite occurs
with finite difference where Dn becomes more and more dense a matrix as shown
in Fig. 1. It is seen from Fig. 1 that in the wavelet-Taylor–Galerkin approach,
compression in the matrix Dn is larger than the wavelet-Galerkin approach.
From this property, we can obtain iterative speed of the wavelet-Taylor–Galerkin
scheme.

Algorithm 2

(i) Initialize (A−1
0 )εM and (d0

u)εV

(ii) (A−1
0 )εMB ��� (D0)εM

(iii) for n = 0, 1, . . . , n1 − 1
(iv) (Dn)εM (dn

u)εV ��� (dn+1
u )εV

(v) D2
n ��� Dn+1

(vi) endfor.

Then the approximate solution of PDE, at t = 2nδt, is d
(2n)
u .

Since differential operators are local operators, it seems that not much can
be gained by compression. However, in wavelet basis it is possible to efficiently
invert the differential operator and then approximate (in a compressed form) the
dense evolution operators. There is no need to change from classical to wavelet
coordinates until some time steps say p. In classical coordinates, the evolution
operator changes from very sparse to dense. In the wavelet representation, we may
start the squaring in the classical coordinates and change to the wavelet basis at
the point where the wavelet representation is sparser. Thus, we have the following
algorithm

Algorithm 3

(i) For n = 0, 2, . . . , p

(ii) (A)−1Bun ��� un+1

(iii) Initialize (A−1)εV and (dp
u)εV

(iv) for n = p + 1, p + 2, . . . , p + n1 − 1
(v) (A−1)εMB(dn

u)εV ��� (dn+1
u )

(vi) trunc(dn+1
u , εV ) ��� (dn+1

u )εV .

It is essential for the success of this algorithm that the computation of the matrix
vector product fully exploits the compressed form of both matrix and vectors. This
can be done using the algorithm in Ref. 8 or fast multiplication based on a general
sparse format for both matrix and vector.
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(a) CN times stepping in wavelets and in finite differences, versus
x = 2n, n = 15, N = 1024, νδt = 10−5, εM = 10−8.
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(b) Taylor–Galerkin approach in wavelets and in finite differences.

Fig. 1. Number of coefficients in the successive powers Dn.
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4. Wavelet-Taylor–Galerkin Schemes for Two-Dimensional
Navier–Stokes Equations

4.1. The Navier–Stokes equations

A two-dimensional incompressible viscous flow is described by the Navier–Stokes
equations. In vorticity/stream-function formulation:

−∆ψ = ω,

∂ω

∂t
+ J(ψ, ω) = ν∇ω + curl f,

where ω is the vorticity field (curl of the non-divergent velocity field), ψ the stream
function, f a forcing term and J(ψ, ω) = ψyωx−ψxωy the two-dimensional Jacobian
operator. We will consider the problem in a doubly periodic square domain.

Rewriting these equations as follows:

−∆ψ = ω. (4.1)
∂ω

∂t
= ν∇ω + s, (4.2)

with s = curl f − J(ψ, ω), we can, at each time step, split the problem into three
subproblems: solve a Poisson equation to obtain stream function from the vorticity,
evaluate the nonlinear term and integrate the heat equation.

The kinetic energy of the system is defined as

E(t) =
1
2

∫
Ω

v2(x, t)dx, (4.3)

where v = (u, v) and x = (x, y), and analogously the enstrophy is

Z(t) =
1
2

∫
Ω

ω2(x, t)dx. (4.4)

The dissipation of energy and enstrophy are related in the following way:

dtE = −2νZ, dtZ = −2νP, (4.5)

where

P (t) =
1
2

∫
Ω

|∇ω|2dx (4.6)

denotes the palinstrophy.
The energy spectrum

E(k) =
1
2

∑
k−1/2<|k|≤k+1/2

|v̂(k)|2, k ∈ Z (4.7)

and enstrophy spectrum

Z(k) =
1
2

∑
k−1/2<|k|≤k+1/2

|ω̂(k)|2, k ∈ Z (4.8)
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are defined using the Fourier transform f̂(k) = 1
4π2

∫
Ω

f(x)exp(−ik.x)dx with k =
(kx, ky) and |k|2 = k2

x +k2
y. The energy and enstrophy spectra are related according

to the expression Z(k) = |k|2E(k).

4.2. Wavelet-Taylor–Galerkin schemes for Navier–Stokes

This scheme can be sketched as follows:
In the following, we will denote by ω̃ the vorticity represented by its wavelet coef-
ficient (the same notation holds for ψ and s. Starting from ω̃n at time t = nδt:

(i) Compute ψ̃n by solving Poisson equation (4.2). Here, we can use the time iter-
ative scheme algorithm 2 as described in Sec. 3, where the numerical solution
has been searched as the long time asymptotic solution of the heat equation
with the same forcing term on right-hand side.

(ii) Perform inverse wavelet transform to obtain nodal values ψn and ωn.
(iii) Compute the nonlinear r.h.s sn by collocation method using a second-order,

energy enstrophy conserving, Arakawa’s scheme.9

(iv) Compute the s̃n by sn.
(v) Finally solve the heat equation (4.2) using the wavelet-Taylor–Galerkin

schemes based on forward time stepping to obtain ω̃n+1, where the second-
order time derivative is expressed in mixed form as ωtt = νωt + [(ν∇ω −
J(ψ, ω))xψy − ψx(ν∇ω − J(ψ, ω))y].

5. Numerical Results

5.1. Case 1

The accuracy of the proposed W-TGM has been verified numerically on the classical
test problem of advection-diffusion of a Gaussian profile. The exact solution is
u(x, t) = (1/σ(t))exp[−(x−x0 −at)2/2σ(t)2], where σ(t) = σ0

(
1+2vt/σ2

0

)1/2. The
parameters given by h = 0.25, x0 = 3.75, a = 1. Figure 2 shows the comparison of
numerical solution obtained for δt = 10−3 using D6 scaling function with the exact
solution. W-TGM scheme has been verified to be asymptotic stable.10 The vector
uεM ,εV is the computed solution given the threshold εM and εV . Hence, we define
the relative compression error as

EεM ,εV =
‖uεM ,εV − u0,0‖∞

‖u0,0‖∞ .

Table 1 shows the relative error introduced by compression EεM ,εV . It is seen
from Fig. 1 that significant compression is achieved in matrix Dn and in the Taylor–
Galerkin approach, the number of elements in matrix Dn is decaying faster than the
wavelet-Galerkin approach. Hence, our W-TGM scheme can take much advantage
of wavelet compression. Here, significant compression is also achieved in solution
vector.
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Fig. 2. Solution of advection-diffusion equation.

Table 1. Compression error for W-TGM scheme.

εV = 0 % elem EεM ,εV εM = 0 % elem EεM ,εV

εM (A−1)εM εV (dn
u)εV

10−10 18.31 8.6e − 11 10−10 88.28 6.6e − 10
10−9 17.64 6.2e − 10 10−9 85.16 2.4e − 09
10−8 16.88 4.6e − 9 10−8 80.47 3.3e − 08
10−7 15.81 1.3e − 07 10−7 74.22 3.3e − 07
10−6 13.61 2.4e − 05 10−6 67.19 4.7e − 06

5.2. Case 2

The numerical experiment we present studies the merging of two same sign vortices.
It concerns free decaying turbulence (no forcing term). The initial condition for the
simulation considered is

ω(x, y) =
i=3∑
i=1

Ai exp
( − ((x − xi)2 + (y − yi)2)/σ2

i

)

with variables σi = 1/π, amplitudes A1 = A2 = −2A3 = π, and positions
x1 = 3π/4, x2 = x3 = 5π/4, y1 = y2 = π, y3 = π(1 + 1/(9σ2)). The initial con-
ditions are quite specific, but the general dynamics of the vortex merger should
not depend critically on the precise arrangement of the vortices. In fully developed
two-dimensional turbulent flows, the chance of vortex merging increases with the
density of vortices. Here, with only three vortices, we need this specific configu-
ration to ensure a rapid merger; the negative vortex effectively replaces the mean
field which pushes vortices together and induces merging. In fact, the configuration
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Fig. 3. Three vortex interaction: initial state (t = 0).

we have chosen should be fairly realistic since in practice, mergers are often caused
by a fast-moving dipole running into another vortex: this is modeled by the three-
vortex initial condition. The initial state is displayed in Fig. 3. In a 2π × 2π box,
three vortices with a Gaussian vorticity profile are present where two are positive
with the same intensity (π) and the other one is negative with half the intensity of
others.

The maximal scale J is 8 which corresponds to a maximum of 256 × 256 =
65,536 degrees of freedom. Further parameters are δt = 2.5 × 10−3, ν = 5 × 10−5.
The turnover time of one of the positive vortices is initially T = 4.0, and the
initial Reynolds number based on the circulation of one of the positive vortices is
Re = 2×104. Note that since there is no external forcing, the energy and enstrophy
decay monotonically in time. We determined that the thresholds used in the wavelet
compression εv = 10−8, εM = 10−8 give satisfactory results. The vorticity fields at
times t = 10, t = 20, t = 30 and t = 40 are displayed in Fig. 4. The comparison of
energy spectra at times t = 0, t = 20, t = 40 are shown in Fig. 5.

6. Conclusion

We derived wavelet-based time accurate schemes for the two-dimensional incom-
pressible Navier–Stokes equations. Our wavelet-based time accurate schemes take
advantage of the compression of both the vorticity field and the operator involved,
e.g., (I − δtν∂2/∂x2)−1, in the wavelet bases in order to simulate two-dimensional
turbulence with a reduced number of non-zero elements. The schemes have been
successfully used in the computational simulation of merging of three vortices. The
problem of vortex merging interaction is chosen because it has the strongest non-
linear interaction typical of two-dimensional turbulence.
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Fig. 4. Three-vortex interaction at different times.
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