
March 16, 2006 14:4 WSPC/181-IJWMIP 00109

International Journal of Wavelets, Multiresolution
and Information Processing
Vol. 4, No. 1 (2006) 65–79
c© World Scientific Publishing Company

TIME ACCURATE FAST THREE-STEP WAVELET-GALERKIN
METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS

MANI MEHRA∗ and B. V. RATHISH KUMAR†

Department of Mathematics, Indian Institute of Technology,
Kanpur, U.P., 208016, India
∗manimeh2001@yahoo.co.in

†bvrk@iitk.ac.in

Received 2 August 2004
Revised 26 September 2005

We introduce the concept of three-step wavelet-Galerkin method based on the Taylor
series expansion in time. Unlike the Taylor–Galerkin methods, the present scheme does
not contain any new higher-order derivatives which makes it suitable for solving nonlin-
ear problems. Numerical schemes taking advantage of the wavelet bases capabilities to
compress the operators and sparse representation of functions which are smooth, except
for localized regions, up to any given accuracy are presented. Here numerical experiments
deal with advection equation with the spiky solution in one dimension, two dimensions
and nonlinear equation with a shock in solution in two dimensions. Numerical results
indicate the versatility and effectiveness of the proposed scheme.
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1. Introduction

Wavelets method is a new numerical tool for solving partial differential equations
(PDEs). Wavelet analysis assumed significance due to successful applications in sig-
nal and image processing during the eighties. Compactly supported wavelets which
are differentiable were introduced by Daubechies in her celebrated paper,1 which has
had applications in a number of areas. Since these functions combine orthogonality
with localization and scaling properties, it has been a natural idea to attempt to use
these functions for the numerical approximation to solutions to partial differential
equations (PDEs). There have been a number of papers in this direction including
studies of Burgers’ equation2,3 as well as two-dimensional flow.4–6 Glowinski et al.7

considered wavelet-based variational methods to solve one-dimension linear and
nonlinear ordinary differential equations. Where multiresolution analysis and their
associated scale function bases are used as alternative bases in Galerkin methods.
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Thus, such methods have convergence properties similar to the ones of spectral
methods, and simultaneously, partial derivative operators discretize similarly as
the finite-difference methods.

In the literature, many tentatives have been performed, often based on Galerkin
or Petrov–Galerkin methods which use the compression properties of wavelet bases,
and contain specific wavelet methods for PDEs. Some of them take advantage of the
wavelet compression of the solution,2 others use instead the wavelet compression of
the operator.8 The aim of this paper is to introduce fast three-step wavelet-Galerkin
method which has the benefit of both these properties.

In the conventional numerical approach to transient problems, the accuracy
gained in using the high-order spatial discretization is partially lost due to the use of
low-order time discretization schemes. Here, usually spatial approximation precedes
the temporal discretization. On the contrary, the reversed order of discretization
can lead to better time accurate schemes with improved stability properties. The
fundamental idea behind the Taylor–Galerkin approach9 is the substitution of space
derivatives for the time derivatives in the Taylor series, as used in derivation of the
Lax–Wendroff method,10 the only modification being that the procedure is carried
out to third order. However, its applications are mainly for hyperbolic problems
and some convection diffusion equations, because too many terms are introduced
in the third-order time derivative term, especially for nonlinear multidimensional
equations, and treatment of the boundary integrations arising from high-order time
derivative terms are too complicated.

A three-step finite element method based on a Taylor series expansion in
time is proposed in Ref. 11. This scheme involves neither complicated expression
nor higher-order derivatives like the Taylor–Galerkin method9 but the advantage
has not been taken of sparsity of matrices which are in evolutionary problems.
Time accurate solution of Korteweg–de Vries equation using the wavelet-Galerkin
method is also developed in Ref. 12 and wavelet multilayer Taylor–Galerkin schemes
for hyperbolic and parabolic problems are introduced in Ref. 13. Our three-step
wavelet-Galerkin method is based on fast algorithms like matrix vector product in
wavelet bases and wavelet compression property of smooth data.

Solutions to PDEs often behave differently in different areas. In fluid dynam-
ics, we have shocks, boundary layers and turbulence. In acoustics, an example of
PDEs is a low-frequency wave, with a localized high-frequency burst. For these
examples, the solution can be smooth in most of the solution domain, with small
areas where the solution changes quickly. Where the discretization in space (correl-
atively in time) ought to handle a huge number of degrees-of-freedom. The aim of
the present paper is to examine the feasibility of applying fast three-step wavelet-
Galerkin method to such types of PDEs which require the advantage of wavelet
compression. A combination of such a time-marching scheme with wavelet approxi-
mation in space can lead to simple higher-order space and time accurate numerical
methods.
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2. Wavelet Preliminaries

Compactly supported wavelets have several properties that are quite useful for
representing solutions of PDEs. The orthogonality, compact support and exact rep-
resentation of polynomials of a fixed degree allow the efficient and stable calculation
of regions with strong gradients or oscillations. Daubechies defines the class of com-
pactly supported wavelets.1 Briefly, let φ be a solution of the scaling relation

φ(x) =
∑

k

akφ(2x − k).

The ak are a collection of coefficients that categorize the specific wavelet basis. The
expression φ is called the scaling function. The associated wavelet function ψ is
defined by the equation

ψ(x) =
∑

k

(−1)ka1−kφ(2x − k).

The normalization
∫

φdx = 1 of the scaling function leads to the condition∑
k ak = 2. The translates of φ are required to be orthonormal, i.e.

∫
φ(x − k)φ

(x−m)dx = δk,m. The scaling relation implies the condition
∑N−1

k=0 akak−2m = δ0,m

where N is the order of wavelet. For coefficients verifying the above two condi-
tions, the functions consisting of translates and dilations of the wavelet function,
ψ(2jx − k), form a complete, orthogonal basis for square integrable functions on
the real line, L2(R).

If only a finite number of the ak are nonzero, then φ will have compact support.
Since

∫
φ(x)ψ(x − m)dx =

∑
k

(−1)ka1−kak−2m = 0,

the translates of the scaling function and wavelet define orthogonal subspaces

Vj = {2j/2φ(2jx − k); m = . . . ,−1, 0, 1, . . .},
Wj = {2j/2ψ(2jx − k); m = . . . ,−1, 0, 1, . . .}.

The relation

Vj+1 = Vj + Wj

implies the Mallat transform1

V0 ⊂ V1 ⊂ · · · ⊂ Vj+1,

Vj+1 = V0 ⊕ W0 ⊕ W1 ⊕ · · · ⊕ Wj .
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Smooth scaling functions arise as a consequence of the degree of approximation of
the translates. The result that the polynomials 1, x, . . . , xp−1 be expressed as linear
combinations of the translates of φ(x − k) is implied by the conditions∑

k

(−1)−kkmak = 0

for m = 0, 1, . . . , p − 1. The following are equivalent results.

(i) {1, x, . . . , xp−1} are linear combinations of φ(x − k);
(ii)

∥∥f − ∑
c j
kφ(2jx − k)

∥∥ ≤ C2−jp‖fp‖, where cj
k =

∫
f(x)φ(2jx − k)dx;

(iii)
∫

xmψ(x)dx = 0 for m = 0, 1, . . . , p − 1;
(iv)

∫
f(x)ψ(2jx)dx ≤ c2−jp.

For the Daubechies scaling/wavelet function, DN have p = N/2. In Fig. 1, we
see an example of a compactly supported scaling function and its associated fun-
damental wavelet function. By rescaling and translation, we obtain a complete
orthonormal system for L2(R) which has a sufficient smoothness to also be a
basis for H1(R). This wavelet system then yields a basis for solution methods
for second-order elliptic boundary problems on intervals on the real line. The illus-
trated example has fundamental support [0, 5]. For arbitrarily large even N , there
is the Daubechies example of a fundamental scaling function defining a wavelet
family with support in the interval [0, N − 1].1 As pointed out by Meyer (1990),
the complete toll box built in L2(R) can be used in the periodic case L2([0, 1])
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Fig. 1. Daubechies scaling and wavelet functions for N = 6 with support on [0, 5].
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by introducing a standard periodization technique. This technique consists at
each scale in folding, around the integer values, the wavelet ψj,k and the scal-
ing functions φj,k centered in [0, 1]. It writes φ̃j,l(x) =

∑∞
n=−∞ φj,l(x + n) and

ψ̃j,l(x) =
∑∞

n=−∞ ψj,l(x + n) and generates VPj and WPj . A function f ∈ VPj in

pure periodic scaling function expansion f(x) =
∑2j−1

k=0 c j
k φ̃j,k(x) and the periodic

wavelet expansion f(x) =
∑2J0−1

k=0 cJ0
k φ̃J0,k(x) +

∑J−1
j=J0

∑2j−1
k=0 dj

kψ̃j,k(x); where J0

satisfies 0 ≤ J0 ≤ J and the decay of the wavelet coefficient is given by the following
theorem14:

Theorem 2.1. Let P = D/2 be the number of vanishing moments for a
wavelet ψj,k and let f ∈ CP (R). Then the wavelet coefficients decay as |dj,k| ≤
CP 2−j(P+ 1

2 ) maxξ∈Ij,k
|f (P )(ξ)|.

3. Three-Step Wavelet-Galerkin Method

Before introducing three-step method, it is necessary to have a brief statement of
the two-step Lax–Wendroff method. Performing a Taylor series expansion in time,
we have

u(t + δt) = u(t) + δt
∂u(t)

∂t
+

δt2

2
∂2u(t)

∂t2
+

δt3

6
∂3u(t)

∂t3
+ O(δt4). (3.1)

By approximating Eq. (3.1) to second-order accuracy, the formulation of two-step
method can be derived as

u

(
t +

δt

2

)
= u(t) +

δt

2
∂u(t)

∂t
,

u(t + δt) = u(t) + δt
∂u(t + δt/2)

∂t
.

(3.2)

Now, we introduce the three-step method.

3.1. Principle of T-WGM for advection-diffusion equation

Consider the linear advection-diffusion equation

∂tu = −a∂xu + ν∂2
xu, (3.3)

where a and ν > 0 are positive constant coefficients.
Let us leave the spatial variable x continuous and discretize (3.3) in time. To

obtain an improved order of accuracy in δt, we shall apply a three-step method based
on the Taylor series expansion (3.1). By approximating Eq. (3.1) up to third-order
accuracy, the formulations of the three-step method can be written as

u

(
t +

δt

3

)
= u(t) +

δt

3
∂u(t)

∂t
,

u

(
t +

δt

2

)
= u(t) +

δt

2
∂u(t + δt/3)

∂t
, (3.4)

u(t + δt) = u(t) + δt
∂u(t + δt/2)

∂t
.
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In Eq. (3.4), by replacing the time derivative with spatial derivatives, the associated
three-step wavelet-Galerkin equations give the T-WGM scheme of

un+ 1
3 = un + D1u

n,

un+ 1
2 = un + D2u

n+ 1
3 , (3.5)

un+1 = un + D3u
n+ 1

2 ,

where the operator D1 will look like D1 = δt
3

(− a∂x + ν∂2
x

)
. Now, the wavelet-

Galerkin discretization turns the problem into a finite-dimensional space.

d
n+ 1

3
u = dn

u + D1d
n
u,

d
n+ 1

2
u = dn

u + D2d
n+ 1

3
u , (3.6)

dn+1
u = dn

u + D3d
n+ 1

2
u .

In this finite-dimensional space, un is to be replaced by the vector dn
u along a wavelet

finite basis, and D are replaced by, respectively, D (finite) matrices. Now, to solve
Eq. (3.6) in the wavelet basis, we will compute D once and store in compressed
form. We can now give a computational procedure for computing (3.6) using wavelet
compression.

Algorithm 1

(i) trunc(D, εM ) ��� (D)εM

(ii) compute initial guess in wavelet basis ��� d0
u

(iii) trunc
(
d0

u, εV

)
���

(
d0

u

)εV

(iv) for n = 0, 1, . . . , n1 − 1
(v) DεM

(
dn

u

)εV ��� dn+1
u

(vi) trunc
(
dn+1

u , εV

)
���

(
dn+1

u

)εV

where trunc(du, εV ) =
{
dj

k, |dj
k| > εV

}
and trunc(D, εM ) = {[Dm,n], [Dm,n] > εM}.

A further property of the wavelet representation of operators is that the suc-
cessive powers Dn of the time iteration matrix become sparser and sparser with
increasing n. This property is very specific to wavelets, as the opposite occurs with
finite difference where Dn becomes a more and more dense matrix as shown in
Fig. 2. It is seen from Fig. 2 that in the wavelet-Galerkin approach, compression in
the matrix Dn is larger than finite difference approach. From this property, we can
obtain iterative speed of the three-step wavelet-Galerkin scheme.

Algorithm 2

(i) Initialize (D0)εM and
(
d0

u

)εV

(ii) for n = 0, 1, . . . , n1 − 1
(iii) (Dn)εM

(
dn

u

)εV ���
(
dn+1

u

)εV

(iv) D2
n ��� Dn+1.

(v) endfor

Then the approximate solution of PDE is at t = 2nδt is d
(2n)
u .



March 16, 2006 14:4 WSPC/181-IJWMIP 00109

Time Accurate Fast Three-Step Wavelet-Galerkin Method for PDEs 71

0 0.5 1 1.5 2 2.5 3 3.5

x 104

0

1

2

3

4

5

6

7

8

9

10
x 104

Finite difference
Wavelets

Fig. 2. Number of coefficients in the successive powers of Dn based on CN times stepping in
wavelets and in finite differences, versus x = 2n, n = 15, N = 1024, δt = 10−3, εM = 10−8.

There is no need to change from classical to wavelet coordinates until some time
steps. In classical coordinates, the evolution operator changes from very sparse to
dense. In the wavelet representation, we may start the squaring in the classical
coordinates and change to the wavelet basis at the point where the wavelet repre-
sentation is sparser. Thus, we have the following algorithm:

Algorithm 3

(i) for n = 0, 2, . . . , p

(ii) Dun ��� un+1

(iii) endfor
(iv) Initialize DεM and

(
dp

u

)εV

(v) for n = p + 1, p + 2, . . . , p + n1 − 1
(vi) DεM

(
dn

u

)εV ���
(
dn+1

u

)
(i) trunc

(
dn+1

u , εV

)
���

(
dn+1

u

)εV

(ii) endfor

It is essential for the success of these algorithms that the computation of the
matrix vector product fully exploits the compressed form of both matrix and vector.
This can be done using the algorithm in Ref. 14 or fast multiplication based on a
general sparse format for both matrix and vector. Our technique is more favorable
for parabolic problems in terms of taking the advantage of sparsity of operator. For
hyperbolic (1st-order systems of) PDEs, the situation is different. We no longer
have a sparse representation of the operator in wavelet space for the hyperbolic
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problem. However, a characteristic for hyperbolic problems is the presence of shocks
in the solution. A solution might be smooth and nearly constant over the whole
domain except at one point where it is discontinuous. Therefore, for hyperbolic
problems, wavelets could be an efficient way to represent the solution instead of, the
solution operator for parabolic and elliptic problems. In contrast with the Taylor–
Galerkin method, the three-step method does not contain any new higher-order
spatial derivatives and can thus be applied to solve nonlinear multidimensional
flows with easy.

3.1.1. Theoretical stability of the linearized schemes

We use the notion of asymptotic stability of a numerical method as it is defined in
Ref. 15 for a discrete problem of the form du/dt = Lu where L is assumed to be
a diagonal matrix. This is because for many evolution equations, it is necessary to
adapt the time steps to the spatial resolution in order to maintain the stability and
precision of the numerical scheme. The region of absolute stability of a numerical
method is defined for the scalar model problem du/dt = λu to be set of all λδt

such that ||un|| is bounded as t → ∞. Finally, we say that a numerical method is
asymptotically stable for a particular problem if, for small δt > 0, the product of
δt times every eigenvalues of L lies within the region of absolute stability.

3.1.2. Numerical simulation of advection equation

Here, we examine the performance of the T-WGM on a linear advection equation
on the unit interval17 with periodic boundary conditions. The initial condition
u0(x) = sin(2πx) + exp−α(x−1/2)2 , which is smooth in most of the domain except
near x = 0.5, where we have a spike and the thresholded wavelet expansion of
the solution u(x, t) is shown in Fig. 3 for α = 104. This wavelet expansion will
have few coefficients, except for in the neighborhood of the spike at x = 0.5 − t.
We stepped forward to t = 0.3, where the solution for j = 8 and j = 9 is shown
in Fig. 4 using wavelet-Galerkin method (WGM). Here, oscillation are produced
throughout the domain due to the quick change of solution near spike for j = 8
and oscillation are confined near the neighborhood of spike for j = 9. In terms of
finite difference methods, we want to have many points in areas where the solution
has strong variation and few points in area where the solution is smooth. If we use
a Galerkin method, this corresponds to the representation of the solution having
fewer basis functions in the smooth areas. Note that by thresholding a wavelet
representation, we have a way to automatically find a sparse representation of
smooth part. Holmstrom and Walden have applied adaptive wavelet methods on
such type of PDEs.18,17 However, by our approach of T-WGM scheme, we are
taking the advantage of the time accurate scheme as well as wavelet capabilities of
compression to produce fast algorithm based on fast matrix vector product in terms
of sparsity. We are getting oscillation-free solution as shown in Fig. 5 without and
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Fig. 3. (a) Initial function u0(x); (b) Truncated approximate solution by D6 with the threshold
ε = 0.001, which leads to 13 retained wavelet coefficients, out of the original 28.
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Fig. 4. Solution of advection equation at t = 0.3 by WGM.
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Fig. 5. Solution of advection equation at t = 0.3, j = 9 by T-WGM.
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with truncation, where WGM is unable to produce oscillation-free solution near the
spike with the same degrees-of-freedom.

Error in approximated solution for WGM, two-step Lax–Wendroff wavelet
Galerkin method (L-WGM) and T-WGM without truncation is shown in Fig. 6;
where near the spike error in the T-WGM scheme is small compared to both L-
WGM and WGM scheme. From this, we can conclude that near the sharp gradients,
we can take the advantage of time accuracy and compression properties of wavelet in
the T-WGM scheme. These nice properties are also observed for all the experiments
in two dimensions.

For some εM > 0, εv > 0, the density of Dn is small but the truncation error∥∥Dn −DεM
n

∥∥ < CεM and
∥∥un −uεv

n

∣∣ < Cεv is bounded for large n. Figure 7 gives an
indication of the error committed by truncation of the solution. In all the schemes,
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Fig. 6. Comparison of errors in approximated solution.
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Fig. 7. Truncation errors ‖un − uεv
n ‖ for different threshold εv.
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Fig. 8. For T-WGM, δt times the eigenvalues of D for j = 8.

δt is chosen such that it should satisfy stability condition. The λδt for the T-WGM
scheme is plotted in Fig. 8.

3.2. T-WGM for 2D advection equation

As in the one-dimensional case, we first examine a linear advection equation. Again
it will test the method’s ability to follow features of the solution:

ut = ux + uy. (3.7)
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Here, we are using the third-order accurate T-WGM scheme based on (3.6). Let
ut = ∇u and putting this values in Eq. (3.6):

un+1/3 = un + D1u
n,

un+1/2 = un + D2u
n+1/3, (3.8)

un+1 = un + D3u
n+1/2,

where D1 = δt
3 a∇, D2 = δt

2 a∇ and D3 = δta∇. All the algorithm in two dimensions
will also take the advantage of wavelet compression like the one-dimensional case.

3.2.1. Numerical simulation of 2D advection equation

The initial function is the smooth function with a localized spike u0(x, y) =
exp−α((x−1/2)2+(y−1/2)2) −0.2 sin(2πx) sin(2πy) and periodic boundary conditions.
In Fig. 9, the inital function and solution at t = 0.3 without and with truncation
is shown for α = 2 × 104.

(a) (b)

(c)

Fig. 9. (a) The initial function; (b) Solution at t = 0.3 when j = 8, εM = 10−5, εv = 0; (c)
Solution at t = 0.125 for εM = 10−5, εv = 10−4.
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(c)

Fig. 10. (a) The initial function; (b) Solution at t = 0.125 when j = 7, εM = 10−5, εv = 0;
(c) Solution at t = 0.125 for εM = 10−5, εv = 10−4.

3.3. T-WGM for 2D nonlinear equation

Now, we would like to examine the ability of our method in two-dimensions when the
gradient has developed in the solution. We examine the following two-dimensional
counterpart to the one-dimensional Burgers’ equation:

ut + u(ux + uy) = ν(uxx + uyy). (3.9)

Here, we are using the third-order accurate T-WGM scheme based on (3.6). Let
f(x, y, u) = u(ux + uy), then the original equation is ut = ν∆u − f(x, y, u) and
putting this value in Eq. (3.6),

un+1/3 = un + D1u
n − (δt/3)f,

un+1/2 = un + D2u
n+1/3 − (δt/2)f, (3.10)

un+1 = un + D3u
n+1/2 − δtf,

where D = νδt
3 ∆u, D = νδt

2 ∆u and D = νδt∆u.
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3.3.1. Numerical simulation of 2D nonlinear equation

If we choose the initial function as a two-dimensional sine wave u0(x, y) =
sin(2π(x + y)) and periodic boundary conditions, the gradient in the shock will
reach its maximum at time t = 0.125 when the extrema of the sine wave have
advected into the shock. In Fig. 10, the inital function and solution at t = 0.125
without and with truncation is shown for ν = 10−2.

4. Conclusion

In the three-step wavelet-Galerkin method, the precedence of time discretization
to space discretization in conjunction with wavelet bases for expressing spatial
terms renders robustness to the proposed schemes and makes them space and time
accurate. The three-step wavelet-Galerkin method retains the third-order accuracy
and stability property of the Taylor–Galerkin method. The concepts are introduced
through linear advection equation and Burgers’ equation where we can show the
power of wavelet compression as well as time accurate schemes. Since no new higher-
order derivative term occurs in the numerical formulations, the present method is
suitable for nonlinear problems. Further, the method can be directly extended to
three-dimensional problems. The numerical results show that the present method
is computationally efficient.
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