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a b s t r a c t

We design a wavelet optimized finite difference (WOFD) scheme for solving self-adjoint
singularly perturbed boundary value problems. The method is based on an interpolating
wavelet transform using polynomial interpolation on dyadic grids. Small dissipation of the
solution is captured significantly using an adaptive grid. The adaptive feature is performed
automatically by thresholding the wavelet coefficients. Numerical examples have been
solved and compared with non-standard finite difference schemes in [J.M.S. Lubuma,
K.C. Patidar, Uniformly convergent non-standard finite difference methods for self-adjoint
singular perturbation problems, J. Comput. Appl. Math. 191 (2006) 228–238]. The proposed
method outperforms the non-standard finite difference for studying singular perturbation
problems for small dissipations (very small ε) and effective grid generation. Therefore, the
proposed method is better for studying the more challenging cases of singularly perturbed
problems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following class of self-adjoint singularly perturbed two-point boundary value problems in the
conservation form (please see [2])

Lu ≡ −ε(a(x)y′(x))′ + b(x)y(x) = g(x), where 0 ≤ x ≤ 1, (1)

subject to

y(0) = α, y(1) = β, α, β ∈ R, (2)

where ε is a small positive parameter and a(x), b(x) and g(x) are smooth functions that satisfy

a(x) ≥ a∗ > 0, a′(x) ≥ 0, b(x) ≥ b∗ > 0.

Under these conditions, the operator L admits a maximum principle [3]. Such problems have non-smooth solutions as
ε → 0 with singularities related to boundary layers [4] and arise in various fields of science and engineering, for instance,
fluid mechanics, quantum mechanics, optimal control, chemical-reactor theory, aerodynamics, reaction-diffusion process,
geophysics etc. There are two kinds of approaches to deal with such problems: the first one is fitted mesh method which
consists of choosing finer meshes in the layer region(s), and another is fitted operator method in which meshes remain
uniform and the difference operator reflects the singularly perturbed nature of the differential operator. These kinds of
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problems using one or both of the strategies have been discussed in [5,6]. Earlier authors have discussed such problems
using B-spline with Shishkin mesh [7]. One of the drawbacks with the Shishkin mesh method is that it requires a priori
knowledge of the location and width of the boundary layers, therefore it motivates us to look for some adaptive methods.
Recently, Lubuma and Patidar [1] have given a non-standard finite difference scheme to deal with such problems using the
second approach (fitted operator). Wavelet optimized finite difference [8] works by using an adaptive wavelet to generate
irregular grids which is then exploited for the finite difference method (Lagrange finite difference in our case) and therefore
it comes under fitted mesh methods.
In singular perturbation problems we have shocks as boundary layers. For such kinds of problems, a solution can be

smooth in most of the solution domain with a small area where the solution changes quickly. When solving such problems
numerically, one would like to adjust the discretization to the solution. In terms of mesh generation (first approach), we
want to have many points in an area where the solution has strong variations and few points in the area where the solution
has weak variations. With a very small perturbation parameter ε, a large Nj (total no. of mesh points at jth level) is required
to obtain accurate solution. For a good resolution of the numerical solution, at least one of the collocation points should lie
in the boundary layer. For example, if the problem possesses a boundary layer of width O(ε), then on a uniform grid with
O(N−1j ) spacing between the points we need Nj = O(ε

−1), which is not practically possible when ε � 1. There have been
many attempts to develop numerical methods using specially designed grids that contain more points in and around the
layers from time to time. Farrell et al. [6] developed a successful upwind central difference scheme on a piecewise uniform
mesh. More literature can be found in [4–7].
Wavelets have beenmaking their presence felt inmany pure and applied areas of science and engineering [8,9].Wavelets

detect information at different scales and at different locations throughout the computational domain.Wavelets can provide
a bases inwhich the basis functions are constructed by dilating and translating a fixed function known as themotherwavelet
(first generation wavelets). The mother wavelet can be seen as a high pass filter in the frequency domain. One of the key
strength of thewaveletmethods is data compression. An efficient basis is one inwhich a given set of data can be represented
with as few basis elements as possible. Suppose we have wavelet representation of a function∑

k

c jkϕ
j
k(x)+

∑
j,k

djkψ
j
k(x),

whereϕjk(x) are scaling functions andψ
j
k(x) arewavelets. The coefficients of the scaling functions c

j
k, dealwith smoother part

of the function, while the wavelet coefficients djk contain information of the function’s behavior on successive finer scales.
Themost commonway of compressing such a representation is thresholding.We generally delete all wavelet coefficients of
magnitude less than some threshold, say τ . If the total number of coefficients in the original representation are Nj, we have
Ns significant coefficients left after the thresholding. Note that by thresholding a wavelet representation, we have a way to
find a adaptive feature and we can also use this representation to compute function values at any point.
We discuss interpolating wavelet transform and adaptive mesh generation in Section 2. Lagrange finite difference has

been given in Section 3 and numerical results and comparisons have been given in Section 4.

2. Interpolating wavelet transform

Herewe briefly describe the interpolatingwavelets of Donoho andHarten [10,11]. Interpolatingwavelets are constructed
on a set of dyadic grids on the line

Aj = {xjk ∈ R : xjk = 2
−jk, k ∈ Z, j ∈ Z}, (3)

where xjk are the grid (collocation) points and j is the level of resolution. Since x
j−1
k = xj2k, it follows that Aj−1 ⊂ Aj.

Essentially, interpolating wavelets can be formally introduced through the interpolating subdivision scheme of Deslauriers
and Dubuc [12], which consider the problem of building an interpolant f j(x) on a grid Aj+1 for a given data sequence f (xjk).
The algorithm proceeds by interpolating the data f (xjk) to the points on the grid Aj+1 which do not belong to Aj. The even
numbered grid points xj2k exist in Vj and the corresponding function values are kept unchanged. Values at odd numbered
grid points xj2k+1 are computed from the polynomial interpolation from the values at the even numbered grid points. The
interpolation is achieved by constructing local polynomials, P2N−1(x) of order 2N − 1, which uses 2N closest points. For
example, to find the value of the interpolant at location xj+12k+1 we construct the polynomial of order 2N − 1 based on the
values of the function at locations xjk+1(l = −N + 1, . . . ,N) and evaluate it at location x

j+1
2k+1. Evaluating this polynomial at

points xj+12k+1 and substituting the values of polynomial coefficients expressed in terms of values f (x
j
k), we can easily get

f j(xj+12k+1) =
N∑

l=−N+1

w
j
k,lf (x

j
k+1). (4)

Themain attraction of the interpolating subdivision scheme is that the values of theseweights are the same for evenly spaced
grids and the procedure can be easily extended to the nonuniform grids, which will result in location dependent weights.
The adaption to the boundaries is simple. We use the closest point inside the boundary on the coarser grid to define the
interpolating polynomial.
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Fig. 1. Scaling function φ(x).

The interpolating scaling function φjk(x) can be formally defined by setting f (x
j
l) = δl,k, where δl,k is the Kronecker delta

and then performing the interpolating subdivision scheme up to an arbitrary high level of resolution J . Now using the linear
superposition, it is easy to show that

f j(x) =
∑
k

c jkφ
j
k(x), (5)

where c jk = f (x
j
k). An example of an interpolating scaling function φ(x) is shown in Fig. 1. It is easy to show that the

interpolating function has the following properties:

• compact support of [−2N + 1, 2N − 1];
• φ(x) is cardinal interpolating; i.e φ(x) = δk,0;
• linear combination of φjk(x) reproduce the polynomials up to degree 2N − 1;
• φ(x) satisfies a refinement relation φjk =

∑
l∈Aj+1 h

j
k,lφ

j+1
l

• φ(x) is the autocorrelation of the Daubechies scaling function of order 2N [13].

Used recursively, the interpolating subdivision scheme generates function values on a finer grid for given values on coarse
grid. On the contrary, when we go from a finer grid to a coarser grid, one could just throw away half of the grid points at
each level, but at the same time some information is lost. Instead at each level, for odd numbered grid points, we compute
the differences between the known function values and the function values predicted by the interpolation from the coarser
grid which are known as wavelet coefficients djk. Repeating these recursively we have an algorithm for wavelet transform
as follows.
The forward interpolating wavelet transform can be written as

djk =
1
2

(
c j+12k+1 −

∑
l

w
j
k,lc

j+1
2k+2l

)
, (6)

c jk = c
j+1
2k , (7)

while the inverse wavelet interpolation transform is given by

c j+12k = c
j
k, (8)

c j+12k+1 = 2d
j
k +

∑
l

w
j
k,lc

j
k+l, (9)

where wjk,l are the interpolating coefficients as introduced in (4). The algorithm for constructing interpolating wavelets on
an interval and on an uniform grid are same except the modification of weights at the boundaries.
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2.1. Adaptive mesh generation

Adaptive mesh is generated in the following steps:
step 1: First we solve the given problem on a uniform mesh for the initial solution profile.
step 2: We apply the wavelet transform to the solution profile and calculate the wavelet coefficients. Wavelet coefficients
will be smaller where the solution is smooth and larger at the location of solution with high gradient like boundary layers
in our case.
step 3: We remove the mesh points where |djk| < τ and keep the remaining mesh points.
step 4: We apply the Lagrange finite difference as given in the next section on the newly generated non-uniform adaptive
mesh in step 3.

3. Lagrange finite difference

Using adaptive mesh points from the interpolating wavelet, derivatives on non-uniform grid are approximated using
Lagrangian interpolating polynomial through p points [8]. We consider only odd p ≥ 3 because it makes the algorithm
simpler. Letw = p−1

2 and define

uI(x) =
i+w∑
k=i−w

u(xk)
Pw,i,k(x)
Pw,i,k(xk)

, (10)

where

Pw,i,k(x) =
i+w∏

l=i−w,l6=k

(x− xl).

It follows that uI(xi) = u(xi) for i = 0, 1, 2 . . .NJ − 1,NJ i.e uI interpolates u at the grid points. Differentiation of uI(x)d
times yields

udI (x) =
i+w∑
k=i−w

u(xk)
Pdw,i,k(x)

Pw,i,k(xk)
. (11)

The derivatives udI (x) can then be approximated at all the grid points by

udI = D
d
pu,

where the differentiation matrix Ddp is defined by

[Ddp]i,k =
Pdw,i,k(xi)

Pw,i,k(xk)
; d = 1, 2.

First and second derivatives are

P (1)w,i,k(x) =
i+w∑

l=i−w,l6=k

i+w∏
m=i−w,m6=k,l

(x− xm), (12)

and

P (2)w,i,k(x) =
i+w∑

l=i−w,l6=k

i+w∑
m=i−w,m6=k,l

i+w∏
n=i−w,n6=k,l,m

(x− xn). (13)

4. Numerical experiments and discussion

In this section we discuss some test cases to demonstrate the efficiency of the proposed method.
Test case 1: First we consider the test case of Reference [1], where in Eq. (1) a(x), b(x) and g(x) are given as

a(x) = 1+ x2, b(x) = 1+ x(1− x),
g(x) = 1+ x(1− x)− exp(−x/

√
ε)[x(2x2 − 3x+ 1)− 2

√
ε(2x2 − x(1+

√
ε)+ 1)]

+ exp(−(1− x)/
√
ε)[x2(2x− 1)+ 2

√
ε(2x2 + x

√
ε + 1)].

Its exact solution is given as
y(x) = 1+ (x− 1) exp(−x/

√
ε)− x exp(−(1− x)/

√
ε).

This test case has boundary layers of width O(
√
ε) at both the boundary points. The Table 1 shows the maximum error

obtained by the proposed method for test case 1, which has also been solved in [1] using non-standard finite difference
technique. On comparing Table 1 with Table 2 we find that our results are comparable with results in [1] for large ε and
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Table 1
Maximum error for test case 1 (τ = 10−4, N = 2).

ε = 10−k Nj = 24 Nj = 25 Nj = 26 Nj = 27 Nj = 28

k = 1 .72× 10−2 .18× 10−2 .22× 10−2 .11× 10−2 .54× 10−3
Nsa→ 16 22 27 42 74
k = 2 .24× 10−1 .83× 10−2 .26× 10−2 .42× 10−2 .16× 10−2

16 30 37 44 74
k = 3 .77× 10−1 .37× 10−1 .14× 10−1 .29× 10−2 .32× 10−2

16 28 41 55 80
k = 4 .40× 10−1 .83× 10−1 .60× 10−1 .25× 10−1 .90× 10−2

16 25 36 54 88
k = 5 .46× 10−2 .19× 10−1 .63× 10−1 .82× 10−1 .45× 10−1

16 24 33 50 85
k = 6 .46× 10−3 .21× 10−2 .86× 10−2 .33× 10−1 .78× 10−1

16 24 32 48 81
k = 7 .46× 10−4 .20× 10−3 .86× 10−3 .35× 10−2 .14× 10−1

16 24 32 48 80
k = 8 .46× 10−5 .20× 10−4 .86× 10−4 .35× 10−3 .14× 10−2

16 24 32 48 80
k = 11 .46× 10−8 .20× 10−7 .86× 10−7 .35× 10−6 .14× 10−5

16 24 32 48 80
k = 12 .46× 10−9 .20× 10−8 .86× 10−8 .35× 10−7 .14× 10−6

16 24 32 48 80
a Number of grid points after adaptivity.

Table 2
Maximum error for test case 1 as computed in [1].

ε = 10−k Nj = 24 Nj = 25 Nj = 26 Nj = 27 Nj = 28

k = 1 .94× 10−3 .24× 10−3 .60× 10−4 .15× 10−4 .37× 10−5

k = 2 .57× 10−2 .15× 10−2 .38× 10−3 .96× 10−4 .24× 10−4

k = 3 .28× 10−1 .11× 10−1 .29× 10−2 .73× 10−3 .18× 10−3

k = 4 .71× 10−2 .29× 10−1 .21× 10−1 .61× 10−2 .17× 10−2

k = 5 .53× 10−2 .13× 10−2 .16× 10−1 .31× 10−1 .15× 10−1

k = 6 .53× 10−2 .13× 10−2 .33× 10−3 .31× 10−2 .25× 10−1

k = 7 .53× 10−2 .13× 10−2 .33× 10−3 .82× 10−4 .15× 10−3

k = 8 .53× 10−2 .13× 10−2 .33× 10−3 .83× 10−4 .21× 10−4

k = 11 .53× 10−2 .13× 10−2 .33× 10−3 .83× 10−4 .21× 10−4

(a) Numerical approximation at Nj = 28, ε = 10−5,Ns = 85. (b) Distribution of wavelet coefficients for ε = 10−4 .

Fig. 2. Test case 1.

become far better for smaller ε (very thin boundary layers). Fig. 2(a) shows the solution for test case 1. It is clear from this
figure. that mesh points are more concentrated near the boundaries (where the boundary layers occur). Fig. 2(b) shows the
wavelet coefficients at different resolutions. As the resolution is increased, non zero wavelet coefficients can be seen only
at the location of solution with high gradient.
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Fig. 3. Relation between τ and Ns for various ε and N for test case 1. (-) shows the line with slope O(N
−p
s ) for ε = 10−3 .

(a) Pointwise error as a function of Ns for various ε. (b) Pointwise error as function of Ns for various N and ε = 10−3 .

Fig. 4. Test case 1.

We denote yjτ (x) be the approximation of y(x) at jth level for prescribed threshold τ using interpolating wavelet. Let us
define maximum pointwise error as

Ec = ‖yjτ − y‖∞, (14)

where ‖.‖∞ is the maximum norm. Fig. 3 gives the relation between τ and Ns and as we decrease the tolerance τ , the
significant coefficients increase that verifies the theoretical results given in [10]

τ ≤ c1N−ps , (15)

where p = 2N − 1 is the degree of interpolating polynomial.
Fig. 4 gives the maximum pointwise error for test case 1 at different Ns for various values of ε (perturbation parameter)

and N . It verifies that the interpolating wavelet representation satisfies the estimate given by

‖yjτ − y‖∞ ≤ c2N
−p
s . (16)

The efficiency of the adaptive algorithm can be measured by the compression coefficient C =
Nj
Ns
. The higher the

compression coefficient the more efficient the adaptive algorithm. In test case 1, the highest compression coefficient
(C = 3.24) is achieved at ε = 10−1, j = 8.
Test case 2: Now we consider the problem [2] with

a(x) = 1, b(x) = 1, g(x) = − cos2(πx)− 2επ2 cos(2πx),
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Table 3
Maximum error for test case 2 (τ = 10−4, N = 2).

ε = 10−k Nj = 24 Nj = 25 Nj = 26 Nj = 27 Nj = 28

k = 3 .55× 10−1 .27× 10−1 .10× 10−1 .23× 10−2 .27× 10−2
Ns → 16 32 45 56 62
k = 4 .28× 10−1 .58× 10−1 .44× 10−1 .19× 10−1 .69× 10−2

16 32 43 54 66
k = 5 .31× 10−2 .13× 10−1 .42× 10−1 .59× 10−1 .34× 10−1

16 32 41 50 61
k = 6 .31× 10−3 .13× 10−2 .55× 10−2 .21× 10−1 .53× 10−1

16 32 40 48 57
k = 7 .31× 10−4 .13× 10−3 .56× 10−3 .22× 10−2 .90× 10−2

16 32 40 48 56
k = 10 .31× 10−7 .13× 10−6 .56× 10−6 .22× 10−5 .91× 10−5

16 32 40 48 56
k = 12 .31× 10−9 .13× 10−8 .56× 10−8 .22× 10−7 .91× 10−7

16 32 38 43 48

(a) Relation between τ and Ns for various ε and N . (b) Relation between C and ε.

Fig. 5. Test case 2.

and the exact solution is given by

y(x) =
exp(−1(1− x)/

√
ε)+ exp(−x/

√
ε)

1+ exp(−1/
√
ε)

− cos2(πx).

Table 3 gives themaximumerror for test case 2. It further strengthens the claim that the proposedmethod gives excellent
results even for very small ε. Fig. 5(a) gives the relation between τ and Ns and Fig. 5(b) gives the relation between C and ε.
Here we observe that as ε is decreasing (which is themore challenging value of ε), the compression coefficient is increasing.
Therefore, for smaller ε, the wavelet adaptive algorithms are more efficient. Fig. 6(a) and (b) show the pointwise error for
test case 2 for various ε and N respectively. Test case 2 again satisfies the estimates (15) and (16).

Test case 3: This test case [1] is with

a(x) = 1, b(x) =
4[1+

√
ε(x+ 1)]

(x+ 1)4
,

g(x) = −
4

(x+ 1)4

[
(1+
√
ε(x+ 1)4π2ε) cos

(
4πx
x+ 1

)
− 2πε(x+ 1) sin

(
4πx
x+ 1

)
+
3(1+

√
ε(x+ 1))

(1− exp(−1/ε))

]
.

The exact solution is given by

y(x) = − cos
(
4πx
x+ 1

)
+
3[exp(−2x/

√
ε(x+ 1))− exp(−1/

√
ε)]

1− exp(−1/
√
ε)

.

Here the relation between τ and Ns is plotted in Fig. 7 and pointwise error is shown in Fig. 8.



810 V. Kumar, M. Mehra / Journal of Computational and Applied Mathematics 230 (2009) 803–812

(a) Pointwise error as a function of Ns for various ε. (b) Pointwise error as a function of Ns for various N and ε = 10−5 .

Fig. 6. Test case 2.

Fig. 7. Relation between τ and Ns for various ε and N for test case 3.

(a) Pointwise error as a function of Ns for various ε. (b) Pointwise error as a function of Ns for various N and ε = 10−4 .

Fig. 8. Test case 3.
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(a) Numerical solution at various times. (b) Adaptive mesh as t ∈ (0, 5).

Fig. 9. Test case 4 for ε = 10−3 .

(a) Numerical solution at various times. (b) Adaptive mesh as t ∈ (0, 5).

Fig. 10. Test case 4 for ε = 10−8 .

Test case 4:We consider the one-dimensional parabolic reaction-diffusion problem as

∂y(x, t)
∂t

= ε
δ2y(x, t)
δx2

; (x, t) ∈ (0, 1)× (0, T ],

y(x, 0) = 0; y(0, t) = t2 and y(1, t) = t.
(17)

In this case, the exact solution is not known and the boundary layers width moves with respect to time and becomes very
thin as time increases. Fig. 9 gives the solution at different times and the corresponding adaptive mesh.
In Fig. 10, we plot the solution and corresponding adaptive grid and observe that for a very small ε = 10−8 the boundary

layer becomes very thin in a narrow region and the corresponding adaptive grid also follows the narrow region of boundary
layer. Fig. 11 gives the numerical solution by WOFD at time interval (0, 5) for different ε.

5. Conclusion

An adaptive wavelet optimized finite difference method for solving a self-adjoint singularly perturbed two point
boundary value problem has been proposed. Numerical results are presented and compared with the exact solution. The
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(a) ε = 10−3 for Nj = 32. (b) ε = 10−8 for Nj = 64.

Fig. 11. Test case 4 for1t = .05.

adaptivity is achieved using the interpolatingwavelet bases. The novelty of this work lies in the thresholding scheme used to
obtain the automatic adaptive feature of wavelet in contrast to the conventional adaptive methods for singularly perturbed
problems where we require pre-knowledge of the solution. Finally, the WOFD method seems to be more efficient even for
a very small dissipation and is easy to implement.
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