
2nd Reading

July 15, 2015 9:28 WSPC/245-JMM 1450001

Journal of Multiscale Modelling
Vol. 6, No. 1 (2015) 1450001 (22 pages)
c© Imperial College Press
DOI: 10.1142/S1756973714500012

A Dynamic Adaptive Wavelet Method
for Solution of the Schrodinger Equation

Ratikanta Behera∗ and Mani Mehra†

Department of Mathematics
Indian Institute of Technology

New Delhi-110016, India
∗rbehera@nd.edu

†mmehra@maths.iitd.ac.in

Published 15 June 2015

In this paper, we present a dynamically adaptive wavelet method for solving
Schrodinger equation on one-dimensional, two-dimensional and on the sphere. Solving
one-dimensional and two-dimensional Schrodinger equations are based on Daubechies
wavelet with finite difference method on an arbitrary grid, and for spherical Schrodinger
equation is based on spherical wavelet over an optimal spherical geodesic grid. The
method is applied to the solution of Schrodinger equation for computational efficiency
and achieve accuracy with controlling spatial grid adaptation — high resolution com-
putations are performed only in regions where a solution varies greatly (i.e., near steep
gradients, or near-singularities) and a much coarser grid where the solution varies slowly.
Thereupon the dynamic adaptive wavelet method is useful to analyze local structure of
solution with very less number of computational cost than any other methods. The
prowess and computational efficiency of the adaptive wavelet method is demonstrated
for the solution of Schrodinger equation on one-dimensional, two-dimensional and on
the sphere.

Keywords: Schrodinger equation; adaptive wavelet method; spherical wavelet;
Daubechies wavelet.

1. Introduction

The rapid expansion in computational power has fueled a broad range investigation
into the efficiency of various algorithms for the solution of general classes of partial
differential equations (PDEs). Many of these PDEs exhibit localized high frequency
behavior. The conventional finite difference approach is most widely used technique
to solve PDEs numerically, however it requires a very fine grid to incorporate the
steep gradients. The disadvantage of the finite difference approach has required
very large number of grid points which heavily increases the computational cost.
Furthermore, most of these grid points are located in regions where the solution
is quite smooth and such a fine grid is not required there. To avoid this problem,
proper adaptive grid is needed. In the proposed wavelet method in Refs. 19, 18
and 24, the wavelet coefficients are used to place nonuniform grids adaptively.

1450001-1

http://dx.doi.org/10.1142/S1756973714500012


2nd Reading

July 15, 2015 9:28 WSPC/245-JMM 1450001

R. Behera & M. Mehra

The nonlinear Schrodinger equation arises in several areas of physics, such as
quantum mechanics (modeling of quantum devices2,3), electromagnetic wave propa-
gation,21 quantum treatment of the nuclei,32 underwater acoustics (paraxial approx-
imations to the wave equation30). In mathematics, the Schrodinger equation and its
variants is one of the basic equations studied in the field of PDEs,1,16 and has appli-
cations to geometry, to spectral and scattering theory, and to integrable systems.1

Since the nonlinear Schrodinger equation is a parabolic equation, it resembles in
the form of standard diffusion equation. There is a significant physical difference, of
course, since the solution diffuses in imaginary time and is not naturally thus dis-
persion becomes a critical numerical issue. There have been several numerical meth-
ods to obtained the solution of nonlinear Schrodinger equation on one-dimensional,
two-dimensional and sphere (i.e., discontinuous Galerkin method,17 finite-difference
representation,7 symplectic and multi-symplectic wavelet collocation method,39

interpolating wavelet method,27 multiwavelet bases optimization of finite difference
method,31 spectral-element method,20 spectral grid method,22 and spectral basis
and effects of split-operator technique,29 Fourier transform methods11). Of course
variety of methods are available that can compute accurate numerical approxima-
tions of the physically relevant solutions. But in recent years, wavelet methods
have becomes a powerful tool for the problems arising different areas of science and
engineering. Wavelet methods have been developed for other application in Refs. 6
and 37.

As finite-difference, finite-volume and finite-element methods have small com-
pact support but poor continuity properties, while spectral methods have global
support. But wavelets appear to combine the advantages of both spectral and
finite-difference bases. One can expect that numerical methods based on wavelets
will attain both good spatial and spectral resolution, i.e., the key idea behind the
wavelet decomposition is to represent a function in terms of basis functions, called
wavelets, which are localized in both space and scale.13 Moreover, the grid adap-
tation is achieved by retaining only those wavelets whose coefficients are greater
than a given threshold (ε). Thus, high resolution computations can be carried out
only in those regions where sharp transitions occur. Furthermore, the computa-
tional cost of the algorithm is independent of the dimensionality of the problem.
Again wavelet methods for PDEs may be divided into two classes: adaptive wavelet-
Galerkin method and adaptive wavelet collocation method.

The major difference between these two methods is that wavelet-Galerkin
method solve problems in wavelet coefficient space, which one can be consid-
ered grid less methods, but wavelet-collocation method solve problem in physical
space on a dynamically adaptive grid. Two difficulties associated with wavelet-
Galerkin method are the treatment of nonlinearities and general boundary con-
ditions, although different possibilities of dealing with these problems have been
proposed.10 On the other hand, wavelet collocation method do not have these
difficulties and the treatment of nonlinearities and general boundary conditions
is a relatively straightforward task. Therefore, the aim of this paper is to apply
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adaptive wavelet method for solving nonlinear Schrodinger equation (NLSE) on
collocation points, which is defined by

iut(p, t) + ∆u(p, t) + C1|u(p, t)|2u(p, t) = 0, (1)

where ∆ is the Laplace-Beltrami operator, u(p, t) is a complex function, t ≥ 0, p is
the point of the general manifold, and C1 is a constant.

In the current work, we use two different approaches to find the solution of
Eq. (1) on different manifolds. In first approach, a dynamic adaptive wavelet method
to solve one-dimensional and two-dimensional Schrodinger equation, that is based
on Daubechies wavelet with finite difference method on an arbitrary grid. In sec-
ond approach, a dynamic adaptive wavelet method to solve spherical Schrodinger
equation, which is based on spherical wavelet over an optimal spherical geodesic
grid.38

The rest of the paper is organized as follows. In Sec. 2, we introduce the concept
of multi-resolution analysis (MRA) and wavelet (Daubechies wavelet and spherical
wavelet). Dynamic adaptive wavelet method for one-dimensional Schrodinger equa-
tion, two-dimensional Schrodinger equation and spherical Schrodinger equation are
discussed in Sec. 3. Section 4 gives the numerical experiment of Schrodinger equa-
tion, and conclusion and outlined are in Sec. 5.

2. Introduction to Wavelets

In this section, we briefly recall the wavelet and multi-resolution analysis (MRA)
that will be used in other parts of the paper. The gap between wavelets and finite
difference schemes may seem very large. However, a very close connection between
these two issues has recently been established.18 Roughly speaking that the term
wavelet is used to describe a spatially localized function, means that the wavelet is
assumed to have most of its energy contained in a very narrow region of the physical
space. We shall restrict ourselves to wavelets with compact support and focus on the
family defined by Daubechies12,14 for one-dimensional and two-dimensional problem
and spherical wavelet28 on optimal spherical geodesic grid.

2.1. Daubechies wavelets

The idea of MRA is first introduced by Stephane Mallat23 and Yves Meyer26 in the
context of wavelet analysis. This is a new and remarkable idea which deals with a
general formalism for construction of an orthogonal basis of wavelets. Indeed, MRA
is central to all constructions of wavelet basis. Thus, MRA is a formal approach to
constructing orthogonal wavelet bases using a definite set of rules and procedures.

A MRA consists of sequence {Vj : j ∈ Z} of embedded closed subspace of L2(R)
that satisfy the following axiom9:

• . . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ,

• ⋃∞
j=−∞ Vj is dense in L2(R), that is,

⋃∞
j=−∞ Vj = L2(R),
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• ⋂∞
j=−∞ Vj = {0},

• u(x) ∈ Vj if and only if u(2x) ∈ Vj+1 for all j ∈ Z, there exist a function φ ∈ V0,

such that {φ0
k = φ(x− k), k ∈ Z} is an orthonormal basis for V0. That is,

‖u‖2 =
∫ ∞

−∞
|u(x)|2dx =

∞∑
k=−∞

|〈u, φ0
k〉|2, ∀ f ∈ V 0, (2)

and it is also required that φ has unit area, i.e.,
∫ ∞
∞ φ(x)dx = 1. Now we define Wj

to be the orthogonal complement of Vj in Vj+1, i.e., Vj⊥Wj and

Vj+1 = Vj
⊕

Wj . (3)

There exists a function, which is called a scaling function φ(x)∈V0, such that
the sequence φj

k(x) = 2j/2φ(2jx − k) is an orthonormal basis for Vj and ψj
k(x) =

2j/2ψ(2jx−k) is orthonormal basis for Wj where j, k ∈ Z, j is the dilation parame-
ter and k is the translation parameter. Mathematically, one can introduces at each
step j, the subspace Wj , defined as the orthogonal complement of Vj in Vj+1.

Since ψj
k ∈ Wj it follows that ψj

k is an orthogonal to φj
k because φj

k ∈ Vj and
Vj ⊥Wj. Also, because all Wj are mutually orthogonal, it follows that the wavelets
are orthogonal across scale. Therefore, we have following relations.∫ ∞

−∞
φj

k(x)φj
l (x)dx = δk,l,

∫ ∞

−∞
ψi

k(x)ψj
l (x)dx = δi,jδk,l, (4)

∫ ∞

−∞
φk

i (x)ψl
k(x)dx = 0, j ≥ i, (5)

where i, j, k, l ∈ Z and δk,l is the Kronecker delta defined as

δk,l =

{
0 if k 	= l,

1 if k = l.
(6)

Further, since V0 ⊂ V1, any function in V0 can be expanded in term of basis function
V1. In particular, φ(x) = φ0

0(x) so

φ(x) =
∞∑

k=−∞
akφ

1
k(x) =

√
2

∞∑
k=−∞

akφ(2x− k), (7)

where ak =
∫ ∞
−∞ φ(x)φ1

k(x)dx. For compactly supported scaling functions only
finitely many ak will be nonzero and we have

φ(x) =
√

2
D−1∑
k=0

akφ(2x− k). (8)

Equation (8) is fundamental for wavelet theory and it is know as the dilation equa-
tion. a0, a2, . . . , aD−1 are called filter coefficients. Here D is an even positive integer
called the wavelet genus. The scaling function is uniquely characterized by these
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coefficients. In analogy to (8) we can write a relation for the basis wavelet ψ. Since
ψ ∈ W0 and W0 ⊂ V1 we can expand ψ (called as wavelet equation) as

ψ(x) =
√

2
D−1∑
k=0

bkφ(2x− k), (9)

where the filter coefficients are bk =
∫ ∞
−∞ ψ(x)φ1

k(x)dx. Although the filter coeffi-
cient ak and bk are not normally computed as we don’t know φ and ψ explicitly.13

However the filter coefficient bk can expressed in term of ak, i.e., bk = (−1)kaD−1−k,
where k = 0, 1, . . . , D − 1. An example of Daubechies scaling function φ(x) and
wavelet function ψ(x) for D = 4 is shown in Figs. 1(a) and 1(b) and respectively.
Further, the accuracy is specified by requiring that ψ(x) = ψ0

0(x) satisfy for all
m = 0, 1, . . . ,M − 1, where M = D

2 vanishing moments∫ ∞

−∞
ψ(x)xmdx = 0. (10)

A function u ∈ VJ can be expanded in various ways. For example, there is the pure
scaling function expansion

u(x) =
∞∑

k=−∞
cJkφ

J
k (x), x ∈ R, (11)

where cJk =
∫ ∞
−∞ u(x)φJ

k (x)dx, for any J0 ≤ J , where J0 is the coarse level of approx-
imation and J is the finest level of resolution, there is also the wavelet expansion
is complete

u(x) =
J−1∑
j=J0

∞∑
k=−∞

dj
kψ

j
k(x), x ∈ R, (12)
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Fig. 1. (a) Daubechies wavelet ψ(x) and (b) scaling function φ(x).
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where due to orthonormality of the wavelets dj
k =

∫ ∞
−∞ u(x)ψj

k(x)dx. Furthermore,
the decay of dj

k depends on the local regularity of u(x) as

|dj
k| ≤ C2−j(L+1)/2 max

ζ∈[k2−j ,(k+M−1)2−j ]
|u(M)(ζ)|. (13)

From Eq. (13), one can find that if the function u(x) behaves like a polynomial
of order less than M in side the small interval, then the coefficients dj

k vanishes
exactly, means one can view the magnitude of dj

k as a direct measure of how well the
assumption of local polynomial behavior, underlying the finite difference scheme,
is satisfied. Equation (13) makes the use of wavelets as local error estimators in
connection with finite difference methods a natural and efficient approach.

Moreover, if u(M) is differs from zero, the coefficients dj
k will decay exponentially

with respect to the scale parameter j, again also the information given by Eq. (13)
provides a local measure of the regularity of the function or rather the closeness to
local polynomial behavior. Hence, this is exactly what we utilize to determine the
need for order and/or mesh adjustments.

2.2. Spherical wavelets

To construct an spherical geodesic grid (also called icosahedral-hexagonal grid), we
begin with a platonic solid (see Fig. 2), which has spherical triangular faces, then
with help of subdivision scheme one can get new vertices onto the surface of the
sphere. We will consider the icosahedral subdivision for which #Kj = 10× 4j +2 at
subdivision level j. For each of Kj grid points is surrounded by 6 nearest neighbors
except for the original 12 icosahedral vertices means our platonic solid. Let S be
a triangulation of the sphere S and denote the set of all vertices obtained after
subdivisions with Sj = {pj

k ∈ S|k ∈ Kj}, where Kj is an index set, and let qj
k

be the center of the triangle pj
i , p

j
k, p

j
k+1 (see Fig. 3). Since Sj ⊂ Sj+1 we also let

Kj ⊂ Kj+1. Let Mj = Kj+1/Kj be the indices of the vertices added when going
from level j to j + 1.

(a) level 0 (b) level 1 (c) level 1 (d) level 1

Fig. 2. Geodesic grid generation based on an icosahedron embedded in the sphere.
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A second generation MRA33 of the sphere provides a sequence Vj ⊂ L2(S) with
j ≥ 0 and the sphere S = {p = (px, py, pz) ∈ R

3 : ‖p‖ = a}, where a is the radius
of the sphere.

• Vj ⊂ Vj+1,
• ⋃

j≥0 Vj is dense in L2(S),
• Each Vj has a Riesz basis of scaling functions {φj

k | k ∈ Kj}.

Since φj
k ∈ Vj ⊂ Vj+1, for every scaling function φj

k filter coefficients hj
k,l exists

such that

φj
k =

∑
l∈Kj+1

hj
k,lφ

j+1
l . (14)

Note that the filter coefficients hj
k,l can be different for every k ∈ Kj at a given level

j ≥ 0. Therefore each scaling function satisfies a different refinement relation. Each
MRA is accompanied by a dual MRA consisting of nested spaces Ṽ j with bases by
the dual scaling functions φ̃j

k, which are biorthogonal to the scaling functions:

〈φj
k, φ̃

j

ḱ
〉 = δk,k′ , for k, k′ ∈ Kj , (15)

where 〈f, g〉 =
∫

s
fgdw is the inner product on the sphere. The dual scaling func-

tions satisfy refinement relations with coefficients {h̃j
k,l}.

One most important thing when you are going to build MRA to construction of
wavelets. They encode the difference between two successive levels of representation,
that is there from Riesz basis for the space W , which is complement of Vj in Vj+1

(i.e., Vj+1 =Vj
⊕Wj). The construction of the wavelets form a Riesz basis for

L2(S) and allow a function to be represented by its wavelet coefficients. Since
Wj ⊂ Vj+1, we can write

ψj
k =

∑
l∈Kj+1

gj
k,lφ

j+1
l , (16)

and the spherical wavelets ψj
m have d̃ vanishing moments, if d̃ is the independent

polynomials Pi, 0 ≤ i ≤ d̃ exist such that

〈ψj
m, Pi〉 = 0 ∀ j ≥ 0, m ∈ Mj , (17)

where Mj is the index set and polynomial Pi are define as the restriction to the
sphere of polynomials on R

3.
Consider a function u(p) ∈ L2(S) which can be approximated as

u(p) =
∑

k∈K0

c0kφ
0
k(p) +

∞∑
j=0

∑
m∈Mj

dj
mψ

j
m(p). (18)
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This equation can be written as sum of two terms composed of wavelets whose
amplitudes are, above and below some prescribed threshold ε that is

u(p) = u≥(p) + u<(p), (19)

where

u≥(p) =
∑

k∈K0

cJ0
k φJ0

k (p) +
∞∑

j=J0

∑
m∈Mj

|dj
m|≥ε

dj
mψ

j
m(p), (20)

u<(p) =
∞∑

j=J0

∑
m∈Mj

|dj
m|<ε

dj
mψ

j
m(p), (21)

where J0 is the coarse level of approximation, Donoho15 has shown that for smooth
enough u,

‖u(p) − u≥(p)‖∞ ≤ c1ε, (22)

and the number of significant coefficients N(ε) = N depends on ε,

N(ε) ≤ c2ε
−n/d, (23)

where d is the order of interpolation, n is the dimension of the problem and the
coefficients ci’s depend on the function. Combining relations (22) and (23) gives
the following bound on the error in terms of N(ε)

‖u(p) − u≥(p)‖∞ ≤ c3N(ε)−d/n. (24)

Note that d controls the number of zero moments of the interpolating scaling func-
tion. This error estimate is consistent with numerical experiment for flat geometry
(Vasilyev and Bowman34,35), and on the sphere (Mehra and Kevlahan24). Further,
different error estimate is consistent with numerical experiment for the multiscale
differential operators on sphere in Refs. 4 and 5.

In order to realize the benefits of the wavelet compression, we need to have the
ability to reconstruct u≥(p) from the subset of N(ε) ⊂ N of significants grid points.
Furthermore, we recall that every wavelet ψj

l (x) is uniquely associated with a collo-
cation point. Hence once the wavelet decomposition is performed, each grid point is
uniquely associated either with the wavelet or scaling function at the coarsest level
of resolution. Consequently, the collocation point should be omitted from the com-
putational grid, if the associated wavelet is omitted from the approximation. This
procedure results in a set of nested adaptive computational grids Sj

≥ ⊂ Sj , such
that Sj

≥ ⊂ Sj+1
≥ , for any j < J−1, where J is the finest level of resolution present in

approximation u≥(x) (for detail see in one dimensional and multi dimensional34,35

and on the sphere24). Thus, if there are no points in the immediate vicinity of a
grid point pj

i , means |dj
k| ≤ ε for all k ∈ N(i), and the points pj+1

k , k ∈ N(i), are not

1450001-8
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present in Sj+1, then there exists some neighborhood Ωj
i of pj

i , where the function
can be interpolated by a wavelet interpolant based on sj

k,m(k ∈ Km).∣∣∣∣∣∣u(p) −
∑

k∈K(i)

sj
k,mφ

j
k(p)

∣∣∣∣∣∣ ≤ c3ε, (25)

where the coefficients sj
k,m can be chosen according as Ref. 24.

When solving the evolution equations an additional criterion for grid adaptation
should be added. The computational grid should consist of grid points associated
with wavelets whose coefficients are significant or could become significant during
a time step. In other words, at any instant in time, the computational grid should
include points associated with wavelets belonging to an adjacent zone of wavelets
for which the magnitude of their coefficients is greater than an a priori prescribed
threshold.

3. Dynamic Adaptive Wavelet Method

Wavelet method is a natural tool for grid adaptation. The strength of a dynamic
adaptive wavelet method now appears. For functions which contain isolated small
scales on a large-scale background, most wavelet coefficients are small, thus we
retain a good approximation even after discarding a large number of wavelets with
small coefficients. The accuracy in the adaptive wavelet method depends upon the
threshold parameter ε. Furthermore, to capture the singular effects in the solution
of Schrodinger equation by using classical discretizations based on uniform (or
even quasi-uniform) partitions into grid would require a very fine resolution near
the singularities and thus lead to enormous problem sizes. One can see that the
nature of the solution begs for the use of adaptive methods which would give finer
resolution in the regions of shock discontinuities and maintain coarser resolution
otherwise.

3.1. One-dimensional nonlinear Schrodinger equation

Consider a periodic function u in the range [−L/2, L/2], then Eq. (1) can be
written as

ut(x, t) = −i∆u(x, t) − iC1|u(x, t)|2u(x, t)

u(x, 0) = h(x)

u(x, t) = u(x+ L, t),

(26)

where t ≥ 0 and x ∈ [−L/2, L/2], and ∆ = ∂2

∂x2 ,

Again consider N = 2J and defined a grid consisting of the points

xJ
l =

(
l

N
− 1

2

)
L, l = 0, 1, 2, . . . , N − 1. (27)

1450001-9
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Define a vector u(t) such that

uJ
l (t) = uJ(xl, t), l = 0, 1, 2, . . . , N − 1, (28)

where uJ(x, t) is an approximate solution of Eq. (26) of the form Eq. (11). Hence
the finite differentiation matrix

d

dt
u(t) = Lu(t) + N(u(t))u(t), t ≥ 0 (29)

u(0) = h = [h(x0), h(x1), h(x2), . . . , h(xN−1)]T , (30)

where

L =
−i
2
β
D(2)

p

L2
(31)

N(u(t)) = iγdiag(|ut(t)|2, l = 0, 1, . . . , N − 1). (32)

Interpolation with algebraic polynomials is the most common and popular way
to generate differencing coefficients. One simply fits the polynomial to the data, fol-
lowed by differentiation of the polynomial, and finally one evaluates the polynomial
at the point of interest. Since we are using grid point from the wavelet, derivatives
on uniform or nonuniform grid are approximated using Lagrangian interpolating
polynomial through p points.19 We consider only odd p ≥ 3 because it makes the
algorithm simpler. Let w = p−1

2 and define

uI(x) =
i+w∑

k=i−w

u(xk)
Pw,i,k(x)
Pw,i,k(xk)

, (33)

where

Pw,i,k(x) =
i+w∏

l=i−w
l �=k

(x− xl). (34)

Equation (33) implies that uI interpolates u at the grid points, i.e uI(xi) = u(xi)
for i = 0, 1, 2, . . . , NJ − 1, NJ . Differentiation of uI(x)d times yields

u
(d)
I (x) =

i+w∑
k=i−w

u(xk)
P

(d)
w,i,k(x)

Pw,i,k(xk)
. (35)

The derivatives u(d)
I (x) can be approximated at all grid points by

u
(d)
I (x) = D(d)

p u, (36)

where differentiation matrix D(d)
p u is defined by

[D(d)
p ]i,k =

P
(d)
w,i,k(xi)

Pw,i,k(xk)
; d = 1, 2. (37)

1450001-10
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The first and second derivatives are

P
(1)
w,i,k(x) =

i+w∑
l=i−w

l �=k

i+w∏
m=i−w
m �=k,l

(x− xm), (38)

P
(2)
w,i,k(x) =

i+w∑
l=i−w

l �=k

i+w∑
m=i−w
m �=k,l

i+w∏
n=i−w
n�=k,l

(x− xn). (39)

Now Eq. (29) can be approximated using Crank-Nicolson method

u(t+ ∆t) − u(t)
∆t

= L
u(t+ ∆t) − u(t)

2

+N
(

u(t+ ∆t) − u(t)
2

)
u(t+ ∆t) − u(t)

2
(40)

and we obtain the time stepping procedure we can get

Aun+1 = Bun + ∆tN
(

un+1 + un

2

)
un+1 + un

2
,

n = 0, 1, 2, . . . , n1 − 1 (41)

u0 = h, (42)

where

A = I − δ

2
L (43)

B = I +
δ

2
L (44)

un = u(n∆t). (45)

Consider u(xJ
k , t), k = 0, 1, . . . , N − 1 be the approximate solution of u(t). The

success of an adaptive method relies on a procedure for determining a grid which is
dense where u is erratic and sparse where u is smooth. In the above estimate (13),
the error at k/2j dependent on size of the neighboring intervals, and a large value
of |dj

k| is an indication that the grid spacing 1/2j is too coarse to resolve u properly
in the interval Ij

k. Hence when a large value of |dj
k| arises, one can add point with

spacing 1/2j+1 about the position k/2j to reduce the error locally. In Ref. 19 it
is suggested that only a few points be added at location k/2j. However, above
mentioned estimates shows that it is reasonable to distribute points evenly over
enter interval Ij

k because the large gradient can be located anywhere with in the
support of the corresponding wavelet. Hence, if the solution vector u is define for
a course grid, then interpolate to the values on the fine grid and compute dj

k. The
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basic steps are presented in Algorithm — (1).

Algorithm 1: Grid adaptation for solving one-dimensional Schrodinger equation.

1 while time ≤ final time do
2 After solving the given problem on a uniform grid for the initial solution

profile. Apply the discrete wavelet transform to the solution profile and
calculate the wavelet coefficient. The wavelet coefficient will be smaller
where the solution is smooth and large at the place singularity.

3 Remove the grid points where |dj
k| < ε (prescribed threshold) and keep

the remaining grid points.
4 Then apply Lagrange finite difference on a irregular grid on a remaining

grid points and get next step solution,
5 end

3.2. Two-dimensional nonlinear Schrodinger equation

Detecting singularity in two-dimensional domain is more complex than detecting
singularity on one-dimensional domain. It is critical to ensure that the grid selection
mechanism does not miss anything in the domain. Here, we have explained two-
dimensional adaptive wavelet method, let us consider p = (x, y) is a point on a
square bounded domain then Eq. (1) can be written as

iut(x, y, t) + ∆u(x, y, t) + C1|u(x, y, t)|2u(x, y, t) = 0, (46)

where ∆ is the Laplacian operator. But u is the unknown scalar function defined
on a square bounded domain with periodic boundary conditions. The time dis-
cretization goes similarly as in the one-dimensional case. The two-dimensional grid
selection mechanism used here is fundamentally the one-dimensional wavelet grid
selection mechanism explained above applied in a tensor product manner.8 After
space discretization the matrices A and B computational cost will be N2 × N2

that is very large computational cost for practical purpose, however for a N ×N in
one-dimensional case, to overcome this problem, and take full advantage of tenso-
rial wavelet based one can factorized approximation of two-dimensional operators.
The use of Alternated Direction Implicit (ADI) methods,36 to approximate the two
dimensional operator (Id− α∆) by product of one-dimensional operators

(Id− α∆) =
(
Id− α

∂2

∂x2

) (
Id− α

∂2

∂y2

)
for small α, (47)

with this factorization, matrices A and B for the second-order Crank-Nicolson
method scheme is

A =
(
I− γ

δt

2
∂2

∂x2

) (
I − γ

δt

2
∂2

∂y2

)
(48)

B =
(
I + γ

δt

2
∂2

∂x2

) (
I + γ

δt

2
∂2

∂y2

)
. (49)
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The basic steps are presented in Algorithm — (2).

Algorithm 2: Grid adaptation for solving two-dimensional Schrodinger equation.

1 while time ≤ final time do
2 After solving the given problem on a uniform grid for the initial solution

profile. Apply the one-dimensional discrete wavelet transform of the rows
followed by one-dimensional discrete wavelet transform of the column to
the solution profile and calculate the wavelet coefficient. The wavelet
coefficient will be smaller where the solution is smooth and large at the
place singularity.

3 Remove the grid points where |dj
k| < ε (prescribed threshold) and keep

the remaining grid points.
4 Then apply Lagrange finite difference on a irregular grid both rows and

columns on a remaining grid points and get next step solution,
5 end

3.3. Schrodinger equation on the sphere

In this section, we will discuss spherical Schrodinger equation over adaptive optimal
spherical geodesic grid38 with help of spherical wavelet. Since S = {p = (x, y, z) ∈
R

3 : x, y, z ∈ R and ‖p‖ = a}, where a is the radius of the sphere. Then Eq. (1) can
be written as

iut(p, t) = −∆u(p, t) − C1|u(p, t)|2u(p, t). (50)

We can write numerical approximation of the Laplace-Beltrami operator on the
sphere ∆25 is

∆u(pj
i ) =

1
As(p

j
i )

∑
k∈N(i)

cotαi,k + cotβi,k

2
[u(pj

k) − u(pj
i )],

where pj
i be a vertex of the triangulation at resolution j and pj

k, k ∈ N(i) is the
neighboring vertices around pj

i , αi,k and βi,k are the angles in a Fig. 3 and N(i) is
the set of nearest vertices of the vertex pj

i , and As(p
j
i ) is the area of the one ring

neighborhood given by

As(p
j
i ) =

1
8

∑
k∈N(i)

(cotαi,k + cotβi,k)‖pj
k − pj

i‖
2
.

Since approximation of Laplace-Beltrami operator on the sphere plays a vital
role in solving Schrodinger equation on the sphere. The convergence of Laplace-
Beltrami operator on an spherical geodesic grid and optimal spherical geodesic grid
is discussed in Refs. 24, 25 and 38. Although the approximation of Laplace-Beltrami
operator on the spherical geodesic grid has been used in practice but it suffers
couple of drawbacks (i.e., truncation error is quite large). Which can be removed
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in the approximation of Laplace-Beltrami operator on optimal spherical geodesic
grid up to some extent.24 Here we refer as dynamically adaptive in the sense that
the irregular optimal geodesic grid of collocation points is dynamically adapted
in time and follows the local structure that appear in the solution. The necessary
steps to construct a dynamically adaptive algorithm for the solution of Schrodinger
equation on an optimal spherical geodesic grid is as described in Algorithm — (3).

Algorithm 3: Grid adaptation for solving Schrodinger equation on the sphere.

1 while time ≤ final time do
2 After getting the solution u≥(t) on the adaptive grid, compute the values

of wavelet coefficients corresponding to each component of the solution
using the fast wavelet transform. For a given threshold ε we update st+∆t

≥
based on the magnitude of wavelet coefficients. We also add an adjacent
zone to the significant coefficients to allow for the change in the solution
during one time step, as described in Section 2.2.

3 If there is no change between computational grids St
≥ and St+∆t

≥ , we go
directly to next step. Otherwise we interpolate the values of the solution
at the collocation points St+∆t

≥ , which are not included in St
≥.

4 We integrate the resulting system of ordinary differential equations in
time to obtain new values u≥(t+ ∆t) at positions on adaptive grid
St+∆t
≥ , and go back to step 2 find the solution u≥(t) on the adaptive grid.

5 end

With such an algorithm the grid of collocation points adapts dynamically in
time to follow local structures that appear in the solution. Moreover by omitting
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wavelets with coefficients below a threshold parameter, we automatically control
the L∞ — norm error of approximation. Thus the method has another important
feature: active control of the accuracy of the solution.

4. Numerical Results and Discussion

In this section, numerical simulations are made for the one-dimensional, two-
dimensional and spherical Schrodinger equation to illustrate the effectiveness of
the proposed methods. The dynamic adaptive wavelet method is used to resolve
rapid and localized variations in the solution of Schrodinger equation.

4.1. One-dimensional Schrodinger equation

To solve one-dimensional Schrodinger equation (Eq. (26)), we consider a periodic
function u(x, 0) = 2sech(x), u ∈ [−L/2, L/2], where L = 64. The parameters of
Eq. (26) are C1 = 2 and h(x) = 2sech(x). The numerical parameters are J = 10
(making N = 1024), ε = 10−4, p = 5,∆t = 1/210, and D = 16 (wavelets genus).
The initial solution (t = 0) and its adaptive grid are plotted in left of Fig. (4), and
the solution at time t = 0.5 and its adaptive grid are ploted in right of Fig. 4. We
observed from Fig. (4), that the grid becomes more dense near the singularity.

In order to demonstrate the tremendous savings of the adaptive algorithm, we
need to compare the number of grid points used in the adaptive and nonadaptive
methods. That can be computed by the compression coefficient C = N(ε = 0)/N(ε).
The larger the compression coefficient, the more efficient the adaptive algorithm.
In Fig. 5 (left) it is clear that hight compression coefficient obtained at ε = 10−1,
furthermore this figure say that when ε goes to zero means the compression coeffi-
cient goes to one, i.e., adaptive algorithm becomes nonadaptive. In Fig. 5 (right) we
have computed error with different ε. The advantage of adaptive wavelet method
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Fig. 4. Solution of one-dimensional Schrodinger equation at time t = 0.5.

1450001-15



2nd Reading

July 15, 2015 9:28 WSPC/245-JMM 1450001

R. Behera & M. Mehra

10
−10

10
−8

10
−6

10
−4

10
−2

0

5

10

15

20

25

30

C

ε
10

−8
10

−6
10

−4
10

−2
10

010
−8

10
−6

10
−4

10
−2

10
0

ε

 ||
 u

(p
) 

−
 u

≥(p
) 

|| ∞
Fig. 5. Compression coefficient with different ε for initial condition (left) and error with ε (right).

is to detect the regions of the computational domain which contain small singular
region as mentioned in Fig. 4.

4.2. Two-dimensional Schrodinger equation

In two-dimensional Schrodinger equation (Eq. (46)), we choose a initial condi-
tion39 u(x, y, t = 0) = (1 + sin(x))(2 + sin(y)) on the square domain [−L/2, L/2]×
[−L/2, L/2], where L = 8.

Here we have plotted initial condition in Fig. 6 (left) and its adaptive grid in
Fig. 6 (right). The problem is solved till time t = 0.11, and the solution and its
adaptive grid are plotted in Fig. 7. here we also observed from Fig. (6) (right) and
Fig. 7 (right), that the grid becomes more dense near the singularity.

We have plotted compression coefficient with different ε in the left of the Fig. 8.
In Fig. 8 (right) we have plotted compression coefficient at different time. Where
the compression coefficient decreases with increasing singularity. Figure 9 clearly
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Fig. 6. (a) Initial condition of two-dimensional Schrodinger equation, (b) and its adaptive grid.
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Fig. 7. (a) The solution of two-dimensional Schrodinger equation time t = 0.11, (b) and its adaptive
grid.
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Fig. 8. Relation between compression coefficient with ε, (see left side) and compression coefficient
with time (see right side) for two-dimensional Schrodinger equation.

demonstrates the convergence of the numerical method with the decreasing ε. Thus
prescribing the value of ε, we can actively control the accuracy of the solution.

4.3. Schrodinger equation on the sphere

For the testing nonlinear Schrodinger equation on the sphere, we take initial con-
dition which is a simple complex Gaussian function on the sphere given by

u(θ, φ, t = 0) = 2 exp
[
−i (θ − θ0) + (φ− φ0)

L2 ∗ (t+ 1)

]
exp

[
− (θ − θ0)2 + (φ− φ0)2

L2 ∗ (t+ 1)

]
, (51)

where θ (−π ≤ θ ≤ π) and φ (−π/2 ≤ φ ≤ π/2) are the longitude and latitude
respectively. θ0 = 0, φ0 = 0, L = 1/2π and C1 = 1.
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Fig. 9. Relation between ε and error for the solution of two-dimensional Schrodinger equation.

Fig. 10. The initial test function (51) with θ0 = 0, φ0 = 0 and L = 1/2π(left), and its adaptive
grid with ε = 10−4.

In Fig. 10 (left) and (right), we have plotted initial condition (Eq. (51)) and
the dynamic adaptation of the computational grid respectively. Moreover, one can
observe from Fig. 11 (left) that a compression coefficient C ≈ 102 for ε ≈ 10−4.
Next we study the convergence of the dynamic adaptive wavelet method on the
Schrodinger equation. We emphasize that the convergence study for the adaptive
wavelet algorithms with ε 	= 0 should be distinguished from the refinement compu-
tational grid. i.e., increasing the maximum allowable level of resolution J . In Fig. 11
(right), the maximum allowable level of resolution is J = 7 fixed. It means beyond
that label J = 7 their is no change in N(ε).

For an initial condition Eq. (51), we have plotted relation between ε and error
in Fig. 12 (left). Moreover we have also plotted relation (24) between N(ε), and

1450001-18



2nd Reading

July 15, 2015 9:28 WSPC/245-JMM 1450001

A Dynamic Adaptive Wavelet Method for Solution of the Schrodinger Equation

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

 C
 

ε
1 2 3 4 5 6 7 8

0

200

400

600

800

1000

 N
(ε

)

 j 

Fig. 11. Relation between compression coefficient (C) and ε of the function 51 (left), and N(ε) as
a function of number of allowed levels j (right).
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Fig. 13. The solution and dynamically adapted grid for the nonlinear Schrodinger equation at
time t = 0.1 with tolerance ε = 10−4.
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error (which is O(N(ε)−2) from Fig. 12 (right) as we take butterfly interpolation
(i.e., d = 4). Conclusively, the error is controlled by ε. In Eq. (50), it is expected
that the solution of nonlinear Schrodinger equation slowly disperses with passing
of time. This equation is solved till time t = 0.1, and the solution and its adaptive
grid for ε = 10−4 are plotted in Fig. 13 respectively.

5. Conclusion and Future Direction

In this work, we have demonstrated how a dynamic adaptive wavelet method works
with local singularity of the solution of Schrodinger equation in a simple manner.
The wavelet decomposition is used for grid adaption and interpolation, while hier-
archical finite difference scheme is apply for grid discretization of Laplace-Beltrami
operators. The results indicate that the computational grid and associated wavelets
can very efficiently adapt to the local irregularities of the solution in order to
resolve sharp transition regions. The proposed dynamic adaptive wavelet method
can be extended to other type of partial differential equations on the sphere with
discontinuous solutions, moreover one can extend the adaptive wavelet method to
other complex geometries leaving freedom and flexibility to choose the wavelet basis
depending on the application.
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