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Abstract

In this paper, we propose wavelet Taylor–Galerkin schemes for parabolic and hyperbolic PDEs
taking full advantage of the compression properties of wavelet basis. The discretization in time is
performed before the spatial discretization by introducing high-order generalization of the standard
time-stepping schemes with the help of Taylor series expansion in time step. Then, we present nu-
merical results for a convection problem in one dimension and Gaussian translating hill problem in
two dimensions. Finally, results for the two-dimensional turbulence are shown.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The application of methods based on wavelets to the numerical solution of partial dif-
ferential equations (PDEs) has recently been studied both from the theoretical and the
computational point of view due to its attractive feature: orthogonality, arbitrary regularity,
good localization wavelet bases seem to combine the advantages of both spectral and finite
element basis. Schematically, the wavelet-based methods for PDEs can be separated into
three classes.

In a first class, wavelets are used, in the framework of a classical grid adaptive numerical
code, to detect where the grid has to be refined or coarsened to optimally represent the
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solution. Instead of expanding the solution in terms of wavelets, the wavelet transform is
used to determine the adaptive grid [7].

In a second class, multiresolution analysis and their associated scale function bases may
be used as alternative bases in Galerkin methods [1,6,11]. Such methods have thus conver-
gence properties similar to those of spectral methods, and simultaneously partial derivative
operators discretize similarly as in finite difference methods. However, as these methods
do not use wavelets but rather scale function as basis functions, they cannot be adaptive
methods and cannot significantly reduce the number of degree of freedom in a numerical
code.

The third class, the only one which uses the compression properties of wavelet bases,
contain specific wavelet methods for PDEs. In the literature, many tentatives have been per-
formed, often based on Galerkin or Petrov–Galerkin methods. Some of them take advantage
of the wavelet compression of the solution [9], others instead use the wavelet compression
of the operator [5]. The aim of the present paper is to introduce the wavelet Taylor–Galerkin
method which has the benefit of both the properties. In the conventional numerical approach
to transient problems, the accuracy gained in using the high-order spatial discretization is
partially lost due to the use of low-order time discretization schemes. Here usually spatial
discretization precedes the temporal discretization. On the contrary, the reversed order of
discretization can lead to better time-accurate schemes with improved stability properties.
The fundamental concept behind the Taylor–Galerkin approach is to incorporate more an-
alytical information into the numerical scheme in the most direct and natural way, so that
the technique may be regarded as an extension of the Obrechkoff methods to PDEs [8] for
ordinary differential equations. Higher-order accurate versions of the Euler time-stepping
algorithms are developed on the basis of Taylor series expansion where the time deriva-
tives are evaluated from the governing equation. It can be generalized to any time-stepping
scheme based on Taylor series expansion.

The nonlinear or variable coefficient term is evaluated by a pseudowavelet technique.
Spatial approximation can be made by using different wavelet bases such as orthogonal
Daubechies wavelets [3], biorthogonal spline wavelets [2], interpolates [4], etc. Our method
works with any of these basis functions. In this paper, we demonstrate our method using
Daubechies compactly supported wavelets.

2. Wavelet Taylor–Galerkin method (WTGM) for evolutionary problems

In the following, we give a brief introduction to wavelets and the notation used. We first
deal with one-dimensional wavelets and then consider two variants for its generalization
to the multivariate case. Finally, we describe how compression properties wavelets can be
used in WTGM scheme for convection problem in one dimension and multidimensional
problems.

2.1. Univariate wavelets

The class of compactly supported wavelet bases was introduced by Daubechies [3] in
1988. They are an orthonormal basis for functions in L2(R). A “Wavelet System” consists
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of the function �(x) and the function �(x) is referred to as the wavelet function. We define
translates of �(x) as

�i (x) = �(x − i). (2.1)

Multiresolution analysis (MRA) is the theory that was used by Ingrid Daubechies to show
that for any nonnegative integer n there exists an orthogonal wavelet with compact support
such that all the derivatives upto an order n exist. MRA describes a sequence of nested
approximation spaces Vj in L2(R) such that the closure of their union equals L2(R). MRA
is characterized by the following axioms

{0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · · ⊂ L2(R),

j=∞⋃

j=−∞
Vj = L2(R),

⋂

j∈Z

Vj = 0,

f ∈ Vj if and only if f (2(.)) ∈ Vj+1,

�(x − k)k∈Z is an orthonormal basis for V0. (2.2)

We define Wj to be the orthogonal complement of Vj in Vj+1, i.e. Vj ⊥ Wj and

Vj+1 = Vj + Wj , (2.3)

�j,k(x)=2j/2�(2j x−k)k∈Z is an orthonormal basis for Vj and � is the solution of so-called
scaling equation

�(x) = √
2

D−1∑

k=0

ak�(2x − k) (2.4)

with explicitly known coefficients ak (low pass filter). An analytical description of � is not
available and also not needed. Wavelets are also dilates/translates of a single function �
such that �j,k = 2j/2�(2j x − k)k∈Z is an orthonormal basis for Wj . Each member of the
wavelet family is determined by the dilation equation

�(x) = √
2

D−1∑

k=0

bk�(2x − k), (2.5)

where D is the order of wavelet and bk = (−1)kaD−1−k, k = 0, 1, . . . , D − 1. As pointed
out by Meyer (1990) the complete toll box built in L2(R) can be used in the periodic
case L2([0, 1]) by introducing a standard periodization technique. This technique con-
sists at each scale in folding, around the integer values, the wavelet �j,k and the scaling

functions �j,k centered in [0,1]. It writes �̃j,l(x) = ∑∞
n=−∞ �j,l(x + n) and �̃j,l(x) =∑∞

n=−∞ �j,l(x + n) and generates VPj and WPj . A function f ∈ VPj in pure periodic
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scaling function expansion f (x) = ∑2j −1
k=0 c

j
k �̃j,k(x) and the periodic wavelet expansion

f (x) = ∑2J0 −1
k=0 c

J0
k �̃J0,k

(x) + ∑J−1
j=J0

∑2j −1
k=0 d

j
k �̃j,k(x), where J0 satisfies 0�J0 �J and

the decay of the wavelet coefficient is given by the following theorem [10]:

Theorem. Let P = D/2 be the number of vanishing moments for a wavelet �j,k and let

f ∈CP (R). Then the wavelet coefficients decay as |dj,k|�CP 2−j (P+1/2) max�∈Ij,k
|f (P)(�)|.

2.2. Multivariate wavelets

The simplest way to obtain multivariate wavelets is to employ anisotropic or isotropic
tensor products.

(MRA-d) Here, the multivariate wavelets are defined by

�j,l(x) := �(j1,l1)
(x1). · · · .�jd ,ld

(xd), j := (j1, . . . , jd) x, l analogous

(MRA) Here, anisotropy is avoided. The scaling functions are simply the tensor products
of the univariate scaling functions. A two-dimensional MRA can be constructed from the
following decomposition:

Vj = Vj ⊗ Vj

= (Vj−1 ⊕ Wj−1) ⊗ (Vj−1 ⊕ Wj−1)

= (Wj−1 ⊗ Wj−1) ⊕ (Wj−1 ⊗ Vj−1) ⊕ (Vj−1 ⊗ Wj−1) ⊕ Vj−1 ⊗ Vj−1

=Wj−1 ⊕ Vj−1.

Then we have VJ = WJ−1 ⊕ · · · ⊕ W0 ⊕ V0. The wavelet basis is given by

{�j,k ⊗ �j,l , �j,k ⊗ �j,l , �j,k ⊗ �j,l}k,l∈Z,0� j �J−1 ∪ {�0,k ⊗ �0,l}k,l∈Z .

We have used this MRA approach in our two-dimensional problem.

2.3. Convection problem

Consider the convection equation

�t u = a�xu, (2.6)

where a is positive constant coefficient.

2.3.1. Time discretization
To obtain an improved order of accuracy in �t we shall apply a Taylor–Galerkin method

based on the following Taylor series expansions: let us first leave the spatial variable x

continuous and discretize only the time to obtain the Euler scheme

un+1 − un

�t
= �un

xx + f (x). (2.7)
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We are expressing the difference approximation to ut at time level n by forward-time Taylor
series expansion, including second and third time derivatives, which gives

un+1 − un

�t
= (ut )

n + �t

2
un

tt + �t2

6
un

ttt + O(�t3) (2.8)

replacing the time derivatives by spatial derivatives, the associated wavelet Taylor–Galerkin
equations based on Euler time stepping scheme include high-order time derivatives. While
the first-order is provided directly by (2.6) and high-order can be obtained by taking the
time derivative of the governing PDEs. We derive two schemes based on the different form
of time derivative of Eq. (2.6).

2.3.2. Scheme with a mixed temporal spatial correction (WTGM)
The time derivative of Eq. (2.6) is

utt = a2uxx and uttt = a2(ut )xx (2.9)

and the substitution of Eqs. (2.6) and (2.9) into Taylor series expansion (2.8) gives WTGM
scheme

Aun+1 = Bun, (2.10)

where

A = I − a2�t2

6
�2
x and B = I − a2�t2

6
�2
x + a�t�x + a2�t2

2
�2
x .

2.3.3. Scheme with spatial correction (WTGMS)
The time derivative of Eq. (2.6) is

utt = a2uxx and uttt = a3uxxx (2.11)

and the substitution of Eqs. (2.6) and (2.11) into Taylor series expansion (2.8) gives WTGMS
scheme

un+1 = Bun, (2.12)

where

A = I and B = I + a�t�x + a2�t2

2
�2
x + a3�t3

6
�3
x .

Now wavelet Galerkin discretization turns the problem into a finite-dimensional space.

dn+1
u = A−1Bdn

u = Ddn
u . (2.13)

In this finite-dimensional space un is to be replaced by the vector dn
u along a wavelet

finite basis, and A and B are replaced by, respectively, A and B (finite) matrices. Due
to second- and third-order term in Taylor series our scheme leads to implicit method that
needs inversion. Now to solve Eq. (2.13) on the wavelet basis we will compute A−1 and
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Fig. 1. Number of coefficients in the successive powers Dn: (a) CN times stepping in wavelets and in finite
differences, versus x = 2n, n= 15, N = 1024, ��t = 10−5, �M = 10−8, (b) Taylor–Galerkin approach in wavelets
and in finite differences.

A−1B once and store in compressed form. We can now give a computational procedure
for computing (2.13) using wavelet compression.

Algorithm.

1. trunc(A−1, �M) - -> (A−1)�M ,
2. compute initial guess in wavelet basis - -> d0

u ,
3. trunc(d0

u, �V ) - -> (d0
u)�V .

For n = 0, 1, . . . , n1 − 1,
4. (A−1)�MB(dn

u)�V - -> dn+1
u ,

5. trunc(dn+1
u , �V ) - -> (dn+1

u )�V ,

where trunc(du, �V )={dj
k , |dj

k | > �V } and trunc(A, �M)={[Am,n] [Am,n], > �M}.

A further property of the wavelet representation of operators is that the successive powers
Dn of the time-iteration matrix become more and more sparser with increasing n. This
property is very specific to wavelets, as the opposite occurs with finite difference where Dn

becomes a more and more dense matrix as shown in Fig. 1. It is seen from 1 that in wavelet
Taylor–Galerkin approach compression in the matrix Dn is larger than wavelet Galerkin
approach. From this property we can obtain iterative speed of the wavelet Taylor Galerkin
scheme.

1. Initialize (A−1
0 )�M and (d0

u)�V ,
2. (D0)

�M - -> (A−1
0 )�MB.

For n = 0, 1, . . . , n1 − 1,
3. (Dn)

�M (dn
u)�V - -> (dn+1

u )�V ,

4. D2
n - ->Dn+1. Then the approximate solution of PDE is at t = 2n�t is d

(2n)
u .
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Since differential operators are local operators, it seems that not much can be gained by
compression. But on a wavelet basis, it is possible to efficiently invert the differential op-
erator and then approximate (in a compressed form) the dense evolution operators. There
is no need to change from classical to wavelet coordinates till some time steps. In classical
coordinates, the evolution operator changes from very sparse to dense. In the wavelet rep-
resentation we may start the squaring in the classical coordinates and change to the wavelet
basis at the point where the wavelet representation is sparser. Thus, we have the following
algorithm:

1. For n = 0, 2, . . . , p,
2. (A)−1Bun - -> un+1,
3. Initialize (A−1)�V and (d

p
u )�V .

For n = p + 1, p + 2, . . . , p + n1 − 1,
4. (A−1)�MB(dn

u)�V - -> (dn+1
u ),

5. trunc(dn+1
u , �V ) - -> (dn+1

u )�V .

It is essential for the success of this algorithm that the computation of the matrix vector
product fully exploits the compressed form of both matrix and vectors. This can be done
using the algorithm of [10] or fast multiplication based on a general sparse format for both
matrix and vector.

Another wavelet Taylor–Galerkin schemes can also be formulated from the another time
stepping, i.e. leap-frog, forward Euler, etc. In all these methods, a fundamental role is
played by the Taylor series in the time increment which is exploited indirectly in multi-
step schemes and directly in single step ones. In this respect, the two different classes of
methods correspond to Runge–Kutta and Obrechkoff [8] methods for ordinary differential
equations. WTGM scheme has inconvenience using the higher-order time derivative for
calculating nonlinear problems. Therefore, we can also use the following Runge–Kutta
form of Lax–Wendroff scheme. By approximating Eq. (2.8) up to third-order accuracy, the
formulation of this scheme can be written as

uk+1/3 = uk + (�t/3)uk
t ,

uk+1/2 = uk + (�t/2)u
k+1/3
t ,

uk+1 = uk + �tu
k+1/2
t . (2.14)

After putting time derivative from the governing PDEs, spatial discretization of Eq. (2.14)
can be performed by wavelet Galerkin method (WGM).

2.3.4. Theoretical stability of the linearized schemes
We use the notion of asymptotic stability of a numerical method as it is defined in [8]

for a discrete problem of the form du/dt = Lu, where L is assumed to be diagonalization
matrix. The region of absolute stability of a numerical method is defined for the scalar
model problem du/dt = �u to be set of all ��t such that ||un|| is bounded as t −→ ∞.
Finally, we say that a numerical method is asymptotic stable for a particular problem if,
for small �t > 0, the product of �t times every eigenvalues of L lies within the region of
absolute stability.
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Fig. 2. Solution of convection equation based on Euler time-stepping scheme: (a) WGM scheme, (b) WTGM
scheme (-, exact,…, �t = .01).
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Fig. 3. Absolute stability region for forward Euler and �t times the eigenvalues of Lj for Daubechies scaling
functions, where �t = .01, left for j = 4, right for j = 6.

2.3.5. Numerical results
The accuracy of the proposed WTGM has been verified first on some benchmark

problems and later these schemes are applied to turbulent flows where wavelets could
be an efficient basis.

2.3.6. Test problem 1
We assume the solution of some large period, for instance, say, four. A comparison of the

solution obtained by WGM and WTGM with the exact solution is made in Figs. 2(a and
b), respectively illustrates the relative superiority of WTGM with the hyperbolic equation.
Fig. 3(a and b) shows the �t times the eigenvalues of matrix resulting from WTGM scheme.
The vector u�M,�V is the computed solution given the threshold �M and �V . Hence, we define
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Table 1
Compression error for WGM scheme

�V = 0 % elem E�M,�V �M = 0 % elem E�M,�V

�M (A−1)�M �V (dn
u )�V

10−10 14.74 7.2e − 11 10−10 61.78 5.6e − 10
10−9 14.32 2.2e − 09 10−9 57.81 5.3e − 09
10−8 13.58 8.64e − 09 10−8 56.25 4.5e − 08
10−7 13.18 2.3e − 06 10−7 51.56 3.1e − 07
10−6 11.79 2.21e − 05 10−6 49.21 3.8e − 06

Table 2
Compression error for W-TGM scheme

�V = 0 % elem E�M,�V �M = 0 % elem E�M,�V

�M (A−1)�M �V (dn
u )�V

10−10 18.31 8.6e − 11 10−10 88.28 6.6e − 10
10−9 17.64 6.2e − 10 10−9 85.16 2.4e − 09
10−8 16.88 4.6e − 9 10−8 80.47 3.3e − 08
10−7 15.81 1.3e − 07 10−7 74.22 3.3e − 07
10−6 13.61 2.4e − 05 10−6 67.19 4.7e − 06

the relative compression error as

E�M,�V = ‖u�M,�V − u0,0‖∞
‖u0,0‖∞

.

Tables 1and 2 shows the relative error introduced by compression E�M,�V . It is seen in
Fig. 1 that a significant compression is achieved in matrix Dn and in Taylor–Galerkin ap-
proach number of elements in matrix Dn is decaying faster than wavelet Galerkin approach.
Here significant compression is also achieved in solution vector.

2.3.7. Test problem 2
The problem of a Gaussian hill translating with a uniform velocity a and spreading

isotropically with a diffusivity � has been considered.

ut = −a · ∇u + �∇2u. (2.15)

Here time discretization will be same as in one-dimensional case as in Eq. (2.6) second-
order WTGM scheme. Initial distribution is given in Fig. 4 and the equations are integrated
till time t = .5 is reached.

2.3.8. Test problem 3
The numerical experiment we present studies the merging of two same sign vortices. It

concerns free decaying turbulence (no forcing term). The initial condition for the simulation



e354 B.V. Rathish Kumar, M. Mehra / Nonlinear Analysis 63 (2005) e345–e356

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

5

10

15

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

2

4

6

8

10

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
0

2

4

6

8

10

Fig. 4. Initial distribution of the hill (left) and solution at t = .5 without compression (in middle) and with
compression in (right) for WTGM scheme.

Fig. 5. Three vortex interaction: initial state (t = 0).

considered is

�(x, y) =
i=3∑

i=1

Ai exp(−((x − xi)
2 + (y − yi)

2)/	2
i )

with variables 	i = 1/
, amplitudes A1 = A2 = −2A3 = 
, and positions x1 = 3
/4, x2 =
x3 = 5
/4, y1 = y2 = 
, y3 = 
(1 + 1/(9	2)). The initial conditions are quite specific,
but the general dynamics of the vortex merger should not depend critically on the precise
arrangement of the vortices. In fully developed two-dimensional turbulent flows the chance
of vortex merging increases with the density of vortices. Here with only three vortices we
need this specific configuration to ensure a rapid merger; the negative vortex effectively
replaces the mean field which pushes vortices together and induces merging. In fact, the
configuration we have chosen should be fairly realistic since in practice mergers are often
caused by a fast-moving dipole running into another vortex: this is modeled by the three-
vortex initial condition. The initial state is displayed in Fig. 5. In a 2
×2
 box, three vortices
with a Gaussian vorticity profile are present two are positive with the same intensity (
),
one is negative with half the intensity of the others.
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Fig. 6. Vorticity fields at times t = 10, 20, 30 and 40.

The maximal scale J is 8, which corresponds to a maximum of 256 × 256 = 65, 536
degrees of freedom. Further parameters are �t = 2.5 × 10−3, � = 5 × 10−5. The turnover
time of one of the positive vortices is initially T = 4.0, and the initial Reynolds number
based on the circulation of one of the positive vortices is Re = 2 × 104. Note that since
there is no external forcing the energy and enstrophy decay monotonically in time. We
determined that the thresholds used in the wavelet compression �v =10−8, �M =10−8 gives
satisfactory results. The vorticity fields at times t = 10, 20, 30 and 40 are displayed in
Fig. 6. The comparison of energy spectra at times t = 0, 20 and 40 is shown in Fig. 7.

3. Conclusion

We derived time-accurate wavelet-based schemes for the parabolic and hyperbolic equa-
tions. Our time-accurate wavelet-based schemes take advantage of the compression of both
the function field and the operator involved, e.g. (I −�t��2/�x2)−1, in the wavelet bases in
order to simulate two-dimensional turbulence with a reduced number of nonzero elements.
The validation of our schemes are presented with the help of convection equation in one
dimension and hill translation in two dimension. The schemes have been successfully used
in the computational simulation of merging three vortices. The problem of vortex-merging
interaction is chosen because it has the strongest nonlinear interaction which is typical of a
two-dimensional turbulence.
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