
Bonding in H2
+: MO Theory

Narayanan Kurur

Department of Chemistry
IIT Delhi

Feb. 22, 2011



H2
+ is the simplest molecular species

The Hamiltonian is

Ĥ =
p̂2

2m
− e2

rA
− e2

rb
+
e2

R
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Approx. wavefunction for H2
+ guessed from R =∞

Two equally likely dissociation pathways for H2
+

1 H2
+ → HA + HB

+

2 H2
+ → HB + HA

+

When R =∞, ψ has significant amplitude only “near A” and “near B”

1 Electron “near A” =⇒ ψ = cA1sA

2 Electron “near B” =⇒ ψ = cB1sB

Guess that ψ = cA1sA + cB1sB everywhere in space
Matter wave ψ constructed by superposition of H AO
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Indistinguishability places restriction on cA and cB

Physically measurable quantities unaffected on interchanging particle
labels

|ψ|2 is unaffected by particle interchange

|ψ(A,B)|2 = |ψ(B,A)|2

=⇒ |cA|2 = |cB|2 = |c|2

For real values, cA = cB and cA = −cB or

ψ = c(1sA ± 1sB)

NDK (CY) Bonding in H2
+: MO Theory CYL110 4 / 17



Normalization provides a recipe to find c.

∫
|ψ|2dτ = c2

∫
|1sA ± 1sB|2dτ

1 = c2
(∫
|1sA|2dτ ±

∫
1s∗A1sBdτ ±

∫
1sA1s∗Bdτ +

∫
|1sB|2dτ

)
When R→∞, ∫

1s∗A1sBdτ =

∫
1sA1s∗Bdτ = 0.

Would you know why?

1 = c2(1 + 0 + 0 + 1)
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At infinite internuclear distance E(H+
2 ) = EH(1s)

E(∞) =

∫
all space

ψ∗Ĥψdτ

=

∫
near A

1s(A)∗√
2
ĤA

1s(A)√
2
dτ

+

∫
near B

1s(B)∗√
2
ĤB

1s(B)√
2
dτ

=
1

2
EH(1s) +

1

2
EH(1s) = EH(1s)

Define this as the zero of energy
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At finite R, ψ is approximately a sum of atomic orbitals

ψ+ = c0 (1s(A) + 1s(B))

ψ− = c1 (1s(A)− 1s(B))

Linear Combination of Atomic Orbitals (LCAO)

1 Maximum simplicity with reasonable accuracy

2 Natural and intuitive appeal

3 Simplifies calculations - atomic orbitals already determined to high
accuracy

4 Wavefunctions around atoms in molecules like those around free
atoms

Bond formation a small perturbation to atomic structure
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Normalization constant depends on the overlap integral

∫
|ψ+|2dτ = 1 = c20

(∫
|1s(A)|2 +

∫
|1s(B)|2dτ

+

∫
1s(A)∗1s(B)dτ +

∫
1s(A)1s(B)∗dτ

)
The overlap integral of the orbitals 1s(A) and 1s(B)

S =

∫
1s(A)∗1s(B)dτ , is

zero when A and B are infinitely far apart, and
has a large contribution from regions where 1s(A) and 1s(B) are
both appreciable

Because ∫
|ψ+|2dτ = c20(1 + 1 + S + S)

ψ+ =
1s(A) + 1s(B)√

2(1 + S)
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More electron density between the nuclei in ψ+

The electron density in the ψ+ MO is

|ψ+|2 =
|1s(A)|2 + |1s(B)|2 + 2(1s(A)1s(B))

2(1 + S)

S reduces the electron density everywhere.
Between the nuclei 2(1s(A)1s(B)) is dominant and

=⇒ |ψ+|2 > |1s(A)|2 + |1s(B)|2

Constructive interference of the two atomic orbitals between the nuclei
in ψ+.
ψ+ describes a bonding state
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There are 0 and 1 nodes in the two lowest MO’s
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Electron density in the two lowest MO’s
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The approximate energy of ψ+ is given by
∫
ψ∗+Hψ+dτ

E+(R) =
1

2(1 + S)

(∫
1s(A)H1s(A)dτ +

∫
1s(A)H1s(B)dτ+∫

1s(B)H1s(A)dτ +

∫
1s(B)H1s(B)dτ

)
Define an integral

Hij =

∫
φiHφjdτ

E+(R) =
HAA +HAB +HBA +HBB

2(1 + S)

E+(R) =
HAA +HAB

(1 + S)
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The atomic integral HAA has a Coulomb term

HAA =

∫
1s(A)∗

(
p̂2

2m
− e2

rA

)
1s(A)dτ +

e2

R

∫
1s(A)1s(A)dτ

−
∫

1s(A)∗1s(A)
e2

rB
dτ

= EH(1s) +
e2

R
+ J

where

J = −
∫

e2

rB
1s(A)∗1s(A)dτ

is the Coulombic interaction between the orbital around one atom and
the other nucleus.
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The resonance integral HAB has an exchange term

HAB =

∫
1s(A)∗

(
p̂2

2m
− e2

rB

)
1s(B)dτ +

e2

R

∫
1s(A)1s(B)dτ

−
∫

1s(A)∗1s(B)
e2

rA
dτ

= S

(
EH(1s) +

e2

R

)
+K

where

K = −
∫

e2

rA
1s(A)∗1s(B)dτ

has no classical interpretation.
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In the GS the electron has a net bonding effect
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Bonding energy comes from the exchange integral
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The LCAO method can be generalized

If ψ = c1f1 + c2f2 then E =
∫
ψHψdτ is

E(c1, c2) =
c21H11 + 2c1c2H12 + c22H22

c21S11 + 2c1c2S12 + c22S22

At the minimum of the energy

∂E

∂c1
=
∂E

∂c2
= 0

c1(H11 − ES11) + c2(H12 − ES12) = 0

c1(H21 − ES21) + c2(H22 − ES22) = 0
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