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Today the influence of temperature on the rates of chemical
reactions is almost always interpreted in terms of what is now
known as the Arrhenius equation. According to this, a rate
constant k is the product of a pre- exponential (“frequency”)
factor A and an exponential term

k = Ae—E/RT (1)

where R is the gas constant and E is the activation energy. The
apparent activation energy E,pp is now defined (1) in terms
of this equation as
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Often A and E can be treated as temperature independent.
For the analysis of more precise rate-temperature data, par-
ticularly those covering a wide temperature range, it is usual
to allow A to be proportional to T raised to a power m, so that
the equation becomes

k = A'Tme—E/RT (3)

where now A’ is temperature independent. Recently Gardiner
(2) has shown that eqn. (3) applies satisfactorily, and better
than eqn. (1), to a number of reactions; he has also discussed
reasons for the failure of eqn. (1). In modern compilations (3)
the procedure often employed is to use eqn. (1) for data of
lower precision or where the temperature range is limited, and
to analyze more precise data in terms of eqn. (3).

Although the temperature dependence of rates is now al-
most universally interpreted in terms of these equations, for
a period of over 60 years (ca. 1850 to ca. 1910), in spite of
considerable experimental effort, there was much uncertainty
and controversy. Mellor’s famous textbook of kinetics (4)
published in 1904 quotes Ostwald as saying that temperature
dependence “is one of the darkest chapters in chemical me-
chanics.” In van’t Hoff’s pioneering textbook of physical
chemistry (5) published in 1898 the evidence was reviewed
with respect to a number of empirical relationships between
k and T, and the author concluded his survey by saying that
“It is so far impossible to choose between the above equa-
tions.”

Some of these early struggles with the problem have re-
cently been reviewed by King (6, 7), who in a very interesting
way has covered both scientific and historical aspects. Besides
being of considerable historical interest, a study of the early
work on temperature dependence provides us with consider-
able insight as to how scientific progress is made not merely
from an analysis of data but from theoretical considerations
of broad applicability.

The Empirical Approach: A Brief Historical Survey

Wilhelmy (8) appears to have been the first to propose, in
1850, an equation relating the rate constant of a reaction to
the temperature. He used the Celsius temperature 6, and his
equation can be written as!

494 Journal of Chemical Education

k=AF’(1+G0) (4)

In terms of the absolute temperature T, the equation can be
written as

k=AFT(1+G'T) (5)
In 1862 Berthelot (9) presented the equation
Ink=A"+DT or k= AeDT (6)

A considerable number of workers supported this equation,
which was taken seriously at least until 1908 (10).
In 1881 Warder (11, 12) proposed the relationship

(a+kR)b-T)=c (7)

where a, b, and ¢ are constants, and later Mellor (4) pointed
out that if one multiplies out this formula, expands the factor
in T and accepts only the first term, the result is

h=a +bT? (8)

Equation (7) received some support from results obtained by
Urech (13-15) and by Reicher (16, 17), but it did not prove
at all popular.

In 1883 Schwab (18), working in van’t Hoff’s laboratories
in Amsterdam, proposed the relationship

Ink=A' —§+ DT or k = Ae—(B=DTH/T (9)

and demonstrated that it applied to the conversion of dibro-
mosuccinic acid into bromomaleic acid and to the reaction
between hydroxide ions and monochloroacetate ions. In the
following year van’t Hoff’s famous textbook on chemical
dynamics (19) appeared, and it contained a discussion of the
temperature dependence of equilibrium constants in terms
of an equation that we can now express in the form

me _AU®
aT |p RT?
where K, is the concentration equilibrium constant and AU®
the standard internal energy change. Van’t Hoff pointed out
that since K. is the ratio of rate constants k; and k_, for re-
action in forward and reverse directions, these rate constants
are also expected to obey an equation of the same form
dlnk| _E
aT |p RT?

where E is an energy change that relates to the particular re-
action.

Van’t Hoff acknowledged having received inspiration for
these ideas from a paper by Pfaundler (20), who as early as

(10)

(11)

1 To avoid confusion, the early equations have all been converted
to a consistent notation, and natural logarithms have been used
throughout. Constants suchas A, A, B, C, D, F, G, a, b, &', and b’ are
temperature independent.



1867 had given a qualitative discussion of equilibrium and
rates in terms of molecular motions and Maxwell’s law of
distribution of molecular speeds. Pfaundler saw clearly that
when chemical equilibrium is established, forward and reverse
reactions are occurring at equal rates. Maxwell’s law had led
to the conclusion that the fraction of molecules having energy
greater than a critical value E is equal to exp(—E/RT') and can
increase markedly with temperature. Pfaundler suggested that
only those molecules possessing more than a critical energy
E could undergo chemical change. Pfaundler’s work is now
largely forgotten, but he was responsible for important con-
cepts that are usually attributed to van’t Hoff and Arrhe-
nius.

Van’t Hoff did not assume AU® and E to be temperature
independent; he also considered the possibility that AU® and
E might involve a temperature independent term and in ad-
dition a negative term proportional to 72. He thus considered
two possible forms for the temperature dependence of k, eqn.
(9) and also the simpler relationship

B
Ink=A"——
n T or

k= Ae~B/T (12)
We have seen that eqn. (9) was supported by the work of
Schwab (18); it was also supported by work of Spohr (21),
van’t Hoff and Reicher (22), Buchbéch (23), and Wegscheider
(24).

In the meantime Hood was making careful kinetic studies
of a number of reactions in solution, and in a paper published
in 1885 (25) he interpreted his results in terms of Berthelot’s
formula, eqn. (6). This equation remained popular for another
20 or more years; a number of papers supported it, including
those of Tammann (26), Remsen and Reid (27), and Perman
and Greaves (10).

A very important contribution to the problem was made in
1889 by Arrhenius (28), whose approach was rather different
from that of the other workers. Starting with van’t Hoff’s
equation (egn. (11)) Arrhenius pointed out that the magni-
tudes of the temperature effects on rates are usually much too

large to be explicable on the basis of how temperature affects
the molecular translational energies, or of the temperature
dependence of the viscosity of the medium. He concluded that
the explanation must be that an equilibrium is established
between normal and active reactant molecules, and that this
equilibrium shifts in the manner predicted by van’t Hoff’s
equation (eqn. (10)). He did not concern himself with a pos-
sible temperature dependence of this energy difference; in fact
he tacitly assumed no temperature dependence and therefore
favored the simple eqn. (1).

An equation in which the pre-exponential factor also has
a temperature dependence was first proposed in 1893 by Kooij
(29), whose equation may be expressed as

Ink =A’—%+ClnT or k=ATCe-B/T  (13)
This equation was supported by Trautz (30) in 1909. As pre-
viously noted, this equation (equivalent to eqn. (3)) is perhaps
the most satisfactory of the equations; data that do not fit the
simple eqn. (1) usually fit eqn. (13) very precisely.

In 1865-67 Harcourt and Esson (31-33) made pioneering
contributions to chemical kinetics, being the first to relate
reactant and product concentrations to the time by means of
equations that they obtained by integrating the differential
equations for rates of reaction. Some 30 years later they col-
laborated again on a very long paper (34) presented as a
Bakerian Lecture to the Royal Society. In this publication
they gave very precise results for the reaction between hy-
drogen peroxide and hydrogen iodide, obtained from 0°C to
50°C at intervals of about 5°. They presented a very detailed
analysis of the temperature dependence and concluded that
it was best represented by equations of the form

Ink=A"+ClnT ‘or k=ATC (14)

This type of relationship did not receive much encourage-
ment from others, but it was supported by some work of Veley
(35) on the affinity constants of bases. One particularly in-
teresting feature of Harcourt and Esson’s work is that they

Table 1. Summary of Temperature-Dependence Equations

Differential Expression Egn. Number . Refer-
Form Integrated Form for k in Text Supported by ence
2
dtljnTk = # Ink=A — ?j— Cin T+ DT k= ATCe 80T/ T 15 van't Hoff, 1898 5
Bodenstein, 1899 42
sink. By &F In k=A’—E+ CinT k= ATCe~B/T 13 Kooij, 1893 29
a7 T T Trautz, 1909 30
d:lrk = B+T—2DT2 Ink=A"— §+ DT k= Ae~8-0TAT 9 Schwab, 1883 18.
van't Hoff, 1884 19
Spohr, 1888 21
van’t Hoff and Reicher, 1889 22
Buchbock, 1897 23
. Wegscheider, 1899 24
M=CT+—W Ink=A"+CinT+ DT k= ATC%PT 16
a7 T2
dink B , B _ ,
=— nk=A"—= k= Ae BT 12 van't Hoff, 1884 19
T T? I Arrhenius, 1889 28
Kooij, 1893 29
dink C ;
==- nk=A+CinT k= ATC 14 Harcourt and Esson, 1895 34
ar T Veley, 1908 35
Harcourt and Esson, 1912 36
g =D Ink= A"+ DT k= AelT 6 Berthelot, 1862 9
gt Hood, 1885 25
Spring, 1887 37
Veley, 1889 38
Hecht and Conrad, 1889 39
Pendelbury and Seward, 1889 40
Tammann, 1897 26
Remsen and Reid, 1899 27
Bugarszky, 1904 41
Perman and Greaves, 1908 10
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made no assumption as to the absolute zero; they represented
the absolute temperature as x + f, where # is the centigrade
(Celsius) temperature, and found x to be 272.6°, in very good
agreement with the modern value of 273.15°. They had thus
established, quite independently of thermodynamics, a kinetic
absolute zero of temperature, at which chemical reaction
would cease.

Most other workers, however, favored different tempera-
ture-dependence equations, and in 1912 Harcourt and Esson
returned to the fray with another lengthy paper (36), in which
they analyzed many of the results obtained by others. They
claimed that eqn. (14) interprets the temperature dependence
better than the rival equations, and for some reactions this
claim is reasonable. For several reactions, however, agreement
can be obtained only if C is allowed to be significantly tem-
perature dependent—it sometimes decreases with increasing
T, but more often increases. To explain deviations from their
equation, they suggested that “the conditions for a stable
communication of heat energy to chemical energy are not se-
cured.” Harcourt and Esson’s two papers make no reference
at all to Arrhenius’ ideas, and make only a disparaging refer-
ence to the arguments of van’t Hoff.

In his 1898 book, van’t Hoff (5) pointed out that most of the
previously presented equations were special cases of the
equations

lnk=A’—g+ClnT+DT or k = ATCe—(B-DTH/T

(15)
They can be arrived at by dropping one or two of the constants
B, C, or D. This is illustrated, and the equations and refer-
ences summarized, in Table 1. We will refer to the general
equation (eqn. 15) as a three-parameter equation, since three
parameters B, C, and D are concerned with the temperature
dependence and remain when the equation is put into its
differential form. Dropping one of the three constants leads
to three two-parameter equations, eqns. (13) and (9) and a
third equation

Ink=A"+CInT+DT or k= ATCeDT  (18)

which seems to have received no consideration or support.
Dropping two of the constants leads to the three one-param-
eter equations, eqns. (12), (14), and (6).

In the following year (1899) Bodenstein (42) published the
results of very careful measurements, over a wide temperature
range (283°-508°C), on the gas phase reaction between hy-
drogen and iodine, on the reverse decomposition of hydrogen
iodide, and on the equilibrium H; + I = 2HI. He analyzed
his results in terms of the three-parameter eqn. (15) and ob-
tained very good agreement. However, from the modern point
of view his analysis would hardly be considered satisfactory.
For example, for the combination of hydrogen and iodine he
fitted his temperature data to the formula

21,832
== 12872In T+ 0.01751 T + 101,487  (17)

Ink =
(note the extravagant use of significant figures). This means
that the preexponential factor varies with temperature ac-
cording to T~129, which now seems to be an unreasonably
strong dependence. Since his pre-exponential factor decreases
strongly with increasing temperature, Bodenstein’s parameter
BR corresponds to an activation energy (181.7 kJ mol~1) that
is significantly higher than the presently accepted K., value
(3b,¢) of 171.4 kJ mol 1.

In 1908-1909 Trautz and Volkmann (43, 44) also analyzed
data of others on the basis of various formulae, including the
three-parameter eqn. (15). Their analysis also leads to ab-
normally large negative temperature dependencies of the
pre-exponential factors, and therefore to apparent activation
energies that are too high according to modern interpreta-
tions.
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It is a curious historical fact that in spite of the controversy
that had been raging for some 60 years, by the second decade
of the present century all formulae except eqns. (1) and (3) had
been quietly dropped. For example, the important papers of
Trautz (45) and Lewis (46) on the significance of the pre-
exponential factor use only the simple Arrhenius equation
(egn. (1)). As far as the Harcourt-Esson equation is concerned,
I am not aware of any papers that quote it except as an his-
torical anomaly (see, for example, ref. (47)).

The most important reason for the acceptance of the
Arrhenius equations is that all of the other relationships are
theoretically sterile. The parameter B in eqn. (12) is related
to an energy E which can be related to the height of an energy
barrier for the reaction. The parameters C and D that appear
in the Harcourt-Esson and Berthelot formulations, on the
other hand, cannot easily be related to any meaningful
physical quantity. The undoubted fact that, for certain re-
actions, the Harcourt-Esson equation fits the data better than
other equations is not a compelling argument in view of the
fact that it does not lead to any understanding of the way in
which a chemical reaction occurs.

Comparison of the Empirical Equations

At first sight it appears surprising that equations as widely
different as some of those listed in Table 1 can all give a rea-
sonably good fit to the same experimental data. We may first
focus attention on the three one-parameter eqns. (12), (14),
and (6). A fit to these separate equations is confirmed if the
following plots are linear:

eqn. (12): In k against 1/T
eqn. (14): In k against In T'
eqn. ( 6): In k against T

The reason that all of these plots can give reasonably good
linear fits with the same data is that over the narrow tem-
perature ranges usually employed in kinetic studies, 1/T, In
T, and T are more or less linearly related to each other. For
practical reasons the temperature range of a kinetic study is
often only about 40°-50°, and it is sometimes even less.
Moreover, the temperature range is often somewhere around
room temperature and is frequently much higher. For exam-
ple, if a study is carried out from 0°C to 50°C, the range is 273
K to 323 K, and the variation in absolute temperature is
therefore only about 20%.

Figure 1 shows In T and T plotted against 1/T, for the
temperature range from 0°C to 100°C. The plot of In T against
1/T shows little curvature, and if the range were only 40° or
80, as in many experiments, the curvature would be hardly
detectable. If we expand In T about the mid point of the range
(323 K) and accept only the first term, the result is

In (T/K) = 478 + 3.10 X 10-3(T/K) (18)

Over the 0-100°C range this equation represents the rela-
tionship with an error of less than 0.2%.

The plot of T against 1/T shows a little more curvature. In
reality such a plot is a hyperbola (see inset in Fig. 1), but in the
0-100°C range one is at the far reaches of the hyperbola where
there is little curvature. An expansion of 1/T about the mid
point of the range leads to

- e -8
T/K 6.19 X 10 9.59 X 1078 (T/K) (19)
Over the 0-100°C range this equation is valid to within 3%.
It follows that if In % is plotted against any one of the three
functions 1/T, In T, and T and a straight line is obtained, the
plot will be almost linear if either of the other two functions
is employed. This is illustrated in Figure 2 for the very reliable
data of Harcourt and Esson (34) on the reaction bhetween
hydrogen peroxide and hydrogen iodide, the temperature
range being 0°C to 50°C. The open circles are for a plot of In
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Figure 1. Plots of In (T/K) and T/K against 1/(7/K), for the temperature range
0°-100°C. The inset shows a plot of T/K against 1/(T/K) for the range 0 K to
10 K.

Table 2. Relationship between the Arrhenius Activation Energy
E(= RT2d In k/dT) and the Temperature Parameters

Equation Activation energy £
15 R(B+ CT+ DT?)
13 R(B+ CT)
9 R(B+ DT?)
16 R(CT+ DT?)
12 RB
14 RCT
6 RDTv4?

k against In T, corresponding to the formula favored by
Harcourt and Esson (eqn. (14)), while the filled circles are for
an Arrhenius plot of In k against 1/T. It is certainly true, as
Harcourt and Esson concluded, that the In & against In 7' plot
is more linear than the other, so that their preference for eqn.
(14) is justified on purely empirical grounds.

The slope of the plot of In k against In T" leads to a value of
20.4 for Harcourt and Esson’s parameter C; i.e., their tem-
perature dependence is expressed by

k= A(T/K)?4 (20)

The Arrhenius parameter B in eqn. (12) has an average value
of 6.05 X 103 K, corresponding to an activation energy of 50.3
kJ mol~l. Table 2 shows the relationships between the
Arrhenius activation energy defined by eqn. (2), and the pa-
rameters in the various equations. In terms of the Harcourt
and Esson parameter C, the activation energy is RCT and will
therefore range from 46.3 kJ mol~! at 0°C to 54.8 kJ mol~! at
50°C. This, however, as shown by the plot in Figure 2, does not
correspond to a very large curvature, and might easily have
been overlooked if the data had been less precise.

Most kinetic data can be interpreted almost equally well
by any of the three one-parameter equations. This being so,
the introduction of an additional parameter into any of these
equations will probably give a completely reliable fit; thus, the
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Figure 2. Plots for the data of Harcourt and Esson (34) for the reaction between
hydrogen peroxide and hydrogen iodide. The units of the rate constant are not
stated but are probably dm® mol~" min~". The natural logarithm of the value k!
of the rate constant is plotted against In (T/K) (open circles) and against 1/(7/K)
(filled circles).

three two-parameter equations, eqns. (13), (9), and (16), will
be equally reliable. The three-parameter eqn. (15) will hardly
ever be significantly better than any of the two-parameter
equations; indeed, as we have noted with reference to Bo-
denstein’s analysis, the three-parameter equation may be
disadvantageous in that there may be a variety of assignments
of parameters that will lead to equally good agreement with
experiment.

It is to be emphasized that finding out which equation gives
the best fit to experimental data is not necessarily the most
satisfactory way of making scientific progress. A significant
point is that certain plots are inherently more likely to be
linear than certain other plots. The more often one takes
logarithms, the more linear do plots become. This is well il-
lustrated by an equation of the form xy = constant. A simple
plot of ¥ against x gives a hyperbola, whereas a plot of In y
against In x gives a straight line; plots of In y against x, or of
y against In x, give lines of much less curvature than the hy-
perbola.

Harcourt and Esson’s plots of In k against In T are inher-
ently more likely to be linear than plots of In k against T or
1/T, because the variation in In T over any range is consider-
ably less than that of T or of 1/T. Thus in the 0 to 50°C range,
T and 1/T vary by 17%, whereas In T only varies by 3%.

Harcourt and Esson’s work is nevertheless of considerable
interest and significance. Perhaps their most important
contribution was to demonstrate the kinetic absolute zero.
Although their equation was not the most fruitful one, it did
represent the temperature dependence very well for certain
reactions, including the one they studied in detail. The
Arrhenius equations (eqns. (1) and (3)) give zero rate at the
absolute zero because as T' — 0, —E/RT — —« and therefore
exp(—E/RT) approaches zero. In the same way In T' — —« as
T — 0; therefore according to the Harcourt-Esson formula,
as T' — =, In K — —= and therefore k approaches zero. Thus,
although their formula was not a fruitful one, in that it did not
lead to a useful theoretical concept of a chemical reaction, it
did lead to their important discovery of the kinetic absolute
Zero.
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Further Progress

After it had been recognized, in the second decade of the
present century, that eqns. (1) and (3) were the most satis-
factory, progress in kinetics was much more rapid. During the
last century chemists had been largely content with factual
information about the products and speeds of a chemical re-
action; the question of the mechanisms of reactions was hardly
considered. Until the end of the nineteenth century physical
chemistry was still in its infancy, having made its most im-
portant advances in the treatment of solutions of electrolytes.
Ostwald and Arrhenius were the pioneers in this field, and
Harcourt played a similar pioneering role in kinetics; in his
lectures he was constantly emphasizing the importance of
finding out how and why chemical change occurs (48, 49). It
is unfortunate that, because he supported a sterile treatment
of temperature dependence, he was himself unable to bring
this laudable aim to a successful conclusion.

From the beginning of the second decade of this century one
can discern three distinct lines of development in the theory
of kinetics, all based on the Arrhenius equation and all coming
together in 1935 with the formulation of transition-state
theory (50, 51).

1) In 1911 Kohnstamm and Scheffer (52), in a paper that now
seems years ahead of its time, attempted a thermodynamic
formulation of reaction rates. This work was further developed
by Brandsma and Scheffer (53-55).

In 1914 Marcelin (56, 57) treated a chemical reaction in terms
of motion over what we would now call a “potential-energy
surface.” The dynamics of such motion was further treated by
Eyring and Polanyi (58) and by Pelzer and Wigner (59).

In 1916 Trautz (60), and in 1918 Lewis (61) developed a treat-
ment of the pre-exponential factor A in terms of the kinetic
theory of gases. This treatment was supported and developed
by many workers, particularly by Hinshelwood (62) and Mo-
elwyn-Hughes (63).

A number of papers attempted to bridge the gap between
these rather different approaches. La Mer (64), for example,
combined the kinetic theories of collisions with the thermo-
dynamic formulations, and represented the preexponential
factor as the product of a collision frequency and a term
exp(AS*/R), where AS't is the entropy of activation.

It was in 1935 that the most general and comprehensive
treatment of reaction rates was formulated, independently
by Eyring (50) and by Evans and Polanyi (51). This theory,
now generally called transition-state theory, has been ex-
tensively applied to a wide variety of physical and chemical
processes (65, 66). Pacey (67) has recently discussed the re-
lationships, which are sometimes not entirely straightforward
between the Arrhenius activation energy and the height of an
energy barrier.

Subsequent treatments of rates, such as those concerned
with the dynamics of motion over a potential-energy surface,
have been of great value, but they are much more complicated
than transition-state theory and are less general in their ap-
plication. The results of calculations on the basis of these
treatments are to a good approximation consistent with
transition-state theory and with the Arrhenius equation.
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