Department of Mechanical Engineering Indian Institute of Technology New Delhi II Semester -- 2022 - 2023

 MCL142 Thermal Science for Electrical Engineers

 MCL142 Thermal Science for Electrical Engineers

 Problem Set 2: Properties of Substances

 Problem Set 2: Properties of Substances}

Hint: Download steam property App on your smart phone and visit this site for properties of other substances: $\underline{\text { https://webbook.nist.gov/chemistry/fluid/ }}$

Problem1: A sealed rigid vessel has volume of $1 \mathrm{~m}^{3}$ and contains 2 kg of water.steam at $100^{\circ} \mathrm{C}$. The vessel is now heated. If a safety pressure valve is installed, at what pressure should the valve be set to have a maximum temperature of $200^{\circ} \mathrm{C}$?

Problem 2: Saturated water vapor at 200 kPa is in a constant pressure piston/cylinder assembly. At this state the piston is 0.1 m from the cylinder bottom. How much is this distance if the temperature is changed to $\mathrm{a} .200^{\circ} \mathrm{C}, \mathrm{b} .100^{\circ} \mathrm{C}$.

Problem 3: In a refrigerator the working substance (called refrigerant) evaporates from saturated liquid to saturated vapor at $-20^{\circ} \mathrm{C}$ inside a pipe around the freezer. The refrigerant coming out the compressor is sent to another pipe, where it condenses form saturated vapor to saturated liquid at $40^{\circ} \mathrm{C}$. For each location find the pressure and the change in specific volume (v) if a. the substance is R-22 b. the substance is ammonia. c. n-Pentane d. Propane and e. Propene.

Problem 4: Two tanks are connected both containing water/steam. Tank A is at $200 \mathrm{kPa}, \mathrm{v}=0.5 \mathrm{~m}^{3} / \mathrm{kg}$, $\mathrm{V}=1 \mathrm{~m}^{3}$, and tank B contains 3.5 kg at 0.5 MPa and $400^{\circ} \mathrm{C}$. The valve is now opened and the two come to a uniform state. Find the final specific volume.

Problem 5: A $400-\mathrm{m} 3$ storage tank is being constructed to hold LNG, liquified natural gas, which may be assumed to be essentially pure methane. If the tank is to contain 90% liquid and 10% vapor, by volume, at 100 kPa , what mass of $\mathrm{LNG}(\mathrm{kg})$ will the tank hold? What is the quality in the tank?

Problem 6: A pressure cooker (closed tank) contains water at $100^{\circ} \mathrm{C}$ with the liquid volume being $1 / 10$ of the vapor volume. It is heated until the pressure reaches 2.0 MPa . Find the final temperature. Has the final state more or less vapor than the initial state?

Problem 7: Ammonia at $10^{\circ} \mathrm{C}$ with a mass of 10 kg is in a piston/cylinder assembly with an initial volume of $1 \mathrm{~m}^{3}$. The piston initially resting on the stops has a mass such that a pressure of 900 kPa will float it. Now the ammonia is slowly heated to $50^{\circ} \mathrm{C}$. Find the final pressure and volume.

Problem 8: A cylinder fitted with a frictionless piston contains butane at $250 \mathrm{C}, 500 \mathrm{kPa}$. Can the butane reasonably be assumed to behave as an ideal gas at this state?

Problem 9: A spherical helium balloon 10 m in diameter is at ambient T and $\mathrm{p}, 15^{\circ} \mathrm{C}$ and 100 kPa . How much helium does it contain? It can lift a total mass that equals the mass of displaced atmospheric air. How much mass of the balloon fabric and cage can then be lifted?

Problem 10: Is it reasonable to assume that at the given states the substance behaves as an ideal gas? a. Oxygen at $30^{\circ} \mathrm{C}, 3 \mathrm{MPa}$; b. Methane at $30^{\circ} \mathrm{C}, 3 \mathrm{MPa}$; c. Water at $30^{\circ} \mathrm{C}, 3 \mathrm{MPa}$ d. R-134a at $30^{\circ} \mathrm{C}, 3$ MPa; e. R-134a at $30^{\circ} \mathrm{C}, 100 \mathrm{kPa}$.

