Chapter 1

Pressure, Potentials, And
The Gradient

1.1 Field Theories in Physics

You are already familiar with the physics of forces, and you understand that an object can only be
accelerated if a force acts on it. We have however avoided the fundamental questions of exactly
how one object places a force upon an other object. You may respond, "How silly, a force is
placed upon an object when another object pushes or pulls it." But there are forces for which the
bodies do not need to be in contact, for example, gravity where it is possible for one planet to
attract another even though the two are separated by a very large distance. This "action at a
distance" has stymied many of the great minds, and the full understanding of this problem has
come only within the last forty years. Unlike other theories, it is not the work of an isolated
genius, but is the culmination of centuries of work by many people.

The question we will answer is how can one object place a force upon another without any
apparent contact between the two whatsoever? Something must go between the two objects to
carry the force, and we'll call it the field. We will direct our attention from the forces to the fields
themselves. Note that this raises the level of abstraction considerably, but you should not forget
that the reason for obtaining the field is to find the force. Always ask your self, "Now that I have
found this field, what force would this field place upon my system." This course is the study of
classical field theories. What properties must the fields have, and how do we describe these field?

It turns out, as you will see, that classical field theories do not fundamentally answer the question
posed because one cannot touch or feel a classical electric field. More importantly, the
electromagnetic fields are not conserved at all! They can be created and destroyed. Well, if they
cannot be seen or felt and they are not conserved, do they exist? Might they be nothing more than
a mathematical trick?

There is no way yet devised to tell whether the classical electromagnetic fields in fact do exist, but
in any case, the question is not relevant because a modern theory with the unwieldy name of
Quantum Electrodynamics (referred to as QED) has combined field theory, relativity, and quantum
mechanics into a powerful theory that agrees with experiment to 14 decimal places! In QED the
electric and magnetic field are combined to form discreet packets or quanta called photons. These
photons sometimes behave as particles and they can be seen and counted by machines. In fact
under special circumstances, it is possible for the human eye to "see" one photon.

In relativity mass and energy are equivalent, and it is possible, therefore, to create mass from
photons, and conversely, to annihilate matter and antimatter to produce photons. This is done
quite easily in modern particle accelerators. Relativity gives us a general conservation law called
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Conservation of Mass—energy, and although the number of photons is not conserved and the mass
is not conserved, the total amount of photons plus mass is conserved. Thus in modern physics, it
is possible to show that photons, packets of electromagnetic fields, do exist and useful
conservation laws have been formulated.

While QED may be too complicated to study here, we will introduce you to the basics behind
classical field theory. Uses of classical fields range from thermodynamics and hydrodynamics to
electromagnetics and computer science. They are found in virtually every field of science that uses
sophisticated mathematics.

The fields are sometimes scalar and sometimes vector in nature so we will use the calculus you are
already familiar with as well as vector calculus. Vector calculus is in some ways much like the
calculus you have already grown to love, however in many ways, vector calculus is far different.
Many of you will be taking vector calculus concurrently and will find that this course will overlap
somewhat with vector calculus. We will not dwell on the mathematics per se; rather, we will study
the physical properties of vector fields.

1.2 Path Integrals and the Gradient.

There are special vector fields that can be related to a scalar field. There is a very real advantage in
doing so because scalar fields are far less complicated to work with than vector fields. A vector
field may be derived from a scalar field any time the vector field is conservative. A conservative
vector field F is required to have a zero path integral over any closed path , i.e.,

$F-dl = 0. (1.1)

Note the conservative field definition follows from mechanics where the work is the path integral
of the force:

W=¢F-dl (1.2)

The energy of a mechanical system is conserved when the work done around all closed paths is
Zero.

In general, a path integral is not like a regular integral, for example, the integral we all know and
love deals with functions. For a function g whose derivative is G:

dg
—==G 1.3
Ix (1.3)
the fundamental lemma of calculus states that
[, Gdx=g(x)-g(x,) (1.4)

where g(x) represents a well-defined function whose derivative exists. This is the integral
developed in introductory calculus, but it is not the only definition of the integral. There are
integrals called path integrals which have quite different properties. In general, a path integral
does not define a function because the integral will depend on the path. For different paths the
integral will return different results. In order for a path integral to return a function it must depend

Classical Fluids, Chapter 1 -2-



only on the end points as in the fundamental lemma (1.4). Then, a scalar field U will be related to
the vector field F by

U(2)—u(1):—f|f il (1.5)

The significance of the minus sign will be discussed in section 2.2. U is the potential energy if F
is the force.

Because of the dependence on path, the path integral is also more complex than the fundamental
lemma. For instance, the fundamental lemma can be inverted by differentiating as in equation
(2-3), but the path integral needs a special operator to invert it. The need for a special operator is
clear if we write a path integral in the Cartesian representation. Then

U(2)-U(@) = - J’IZFX dx - I:Fy dy - I:FZ dz (1.6)

where F,, F,, and F, are the components of the vector field. In order for a relation like the

fundamental lemma to exist, F, must be the derivative of f with respect to x. Thus, for equation
(1.6) to be satisfied,

F= M o M o N (1.7)
x0Ty o7

We can satisfy all of the conditions (1.7) by defining the 'Del' operator. In the Cartesian
representation

~d =
= i —+ 1.8
] (1.8)

@L%
¥ o

An operator in nothing new to you. It simply represents a set of instructions for the performance
of an operation on whatever lies to the right of the operator. For instance, the cross product sign X
is an operator that tells you to use the determinant rule to multiply two vectors together, and d/dx
instructs you to take the derivative with respect to x of anything that lies to the right.

Similarly, del operates on whatever resides to the right of it and basically follows the rules of
vector multiplication. Because the del is an operator, it has no magnitude, and therefore, no
meaning by itself. It only has meaning when it operates on something. Since del has no

magnitude and is always a vector, we needn't bother writing an arrow over it.

We can transform del to other coordinate systems by looking at how the differentials behave. In
spherical polar coordinates we have

{dx, dy, dz} — {dr, rd0, r sin0 dd}

which when we transform del gives:
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9, 9 9 (1.9)

As a reference note remember that transforming del works fine for del operating on a scalar, but
becomes more complex when del operates on a vector. Expression (1.9) will not hold for the polar
form when del operates on a vector.

Using del, equation (1.7) is an operation called the gradient. The Cartesian representation of the
gradient is

o= 79 jﬁ l (1.10)
x "o oz

where it's important to note that the result is a vector, and herein,lies the importance. It is possible
to obtain a vector field V& from a scalar field € by utilizing the gradient.

Example 1.1

fix,y,z) = 3X¥y" +4x — 6y Find a) the gradient of f, and b) where the minimum value of f
occurs.

A

~ 0 0 ~
Solution: Of= i —(3x°y%* 4x)+ | —(3x°y* —6y)+ 0k =i(6xy’+ 4) + j(6x°y—6).
olution: a) 53Xy )Jéy( y* - 6y) i(6xy"+ 4) + ] (6y - 6)
b) The minimum in f occurs where its slope is zero or where Vf =0. =

(6x°+4) + j(6:°y—6) = 0

In order for this to be true both the x and y components of the gradient ("slope") must
independently go to zero.

6xy’+4 =0 and 6xXy—6 = 0

[y [

X_—\/§ and y—sﬂ
2 9

1.3 The Gradient

Of what use can the gradient be? It looks horribly complicated, but as you will see, the power it
gives us far outweighs its seeming complexity. Moreover, it is not just a mathematical curiosity
but a tool that you will use often because its geometrical interpretation makes it so important. We'll
start with a one dimensional function f(x) to illustrate some of the properties then proceed to more
complex situations.

Example 1.2

Suppose a graph of f{x) looks like that shown in Figure 1.1 where to the left of x, the function has
a positive slope, to the right a negative slope, and a maximum at x,. Find where the gradient
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points in the positive x direction and where the gradient points in the negative x direction.

Solution: If f{x) only depends on x, then its y and z partial derivatives are zero so that

o= 97
OX
Fae
+ slope — slope
| >
X, X
Figure 1.1

For a function of one dimension the gradient points
towards the place where the function has a maximum.

Since df/0x is the slope, we see that the gradient is positive to the left of x, and negative to the
right. The gradient, thus, always will be a vector pointing towards x_, i.e., the direction of the
gradient will always point to the place where the function has a maximum, and the magnitude of
the gradient will be the slope of the function.

In actuality the gradient is just the generalization of slope to functions of more than one variable. If
we consider the function f{x, y) to be a hill, the gradient will point towards the top of the hill, and
its magnitude gives the steepness of the hill. Geologists and hikers implicitly employ the concept
of gradient when reading topographic maps. When hiking in the mountains you quickly become
aware of the effects of gravity, and it is because of these effects that we represent the locus of
points at a given height as a contour line on a topographic map. Where contour lines are very close
together, the country will be very steep because the height changes quickly in a short distance, and
this means a large gradient. Remember that the gradient is the change in the scalar function divided
by the change in distance.

Since the gradient is given by the change in the function, we can also determine the direction of the
gradient at any point. Note that a function, by definition, does not change along a contour line;
therefore, the change in the function must be perpendicular to the contour line. If we combine this
with the fact that the gradient always points towards the top of the hill, then we have a very
powerful and easy method for determining immediately from a contour plot where the gradient is
large and also its direction. A plot of a function and its associated contour map is shown in

Figure 1.2. The gradient is shown at a few representative points on the contour map. You should
practice representing the gradient at other points
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Figure 1.2

A function f{x,y) in (a), and its contour map in (b). The two are not aligned. Can you find which
places on the contour map correspond to places on the 3—D plot?

1.4 Gravity

First we will move away from a description based on the force by defining a gravitational field g.
Let's return to Newton's problem. Consider an apple starting from rest and accelerating freely
under the influence of gravity. The force of the earth's attraction causes the apple to fall, but how
specifically? Until the apple hits the ground, the earth does not touch the apple so how does the
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earth place a force on the apple? Something must go from the earth to the apple to cause it to fall,
i.e., the earth must exude something that places a force on the apple. This something exuded by
the earth we call the gravitational field. We can start by investigating the properties of the
gravitational field.

To operationally define the gravitational field we note that since it is exuded by the earth, it should
not depend on the mass of the apple. The force on the apple, however, does depend on the apple's
mass so we can define the gravitational field by taking the force on the apple and dividing out the
apple's mass. We must be careful because if the earth produces a gravitational field, so should the
apple (albeit small compared to the earth's). So to get the field due to the earth, we should let the
mass of the apple go to zero. Hence our operational definition of the field due to gravity is

g= (im % (1.11)

where F is the force due to gravity on our test apple, and the limit means that the mass of the apple
should be as small as possible. If we define ... to be up, the force on an apple will be

F=-mgj

Of course it should be obvious why we have called the gravitational field g: it is nothing less than

the acceleration due to gravity. Note that the field g is the same for all objects a given distance
from the earth's surface.

Newton's law of gravitation gives the force on our apple as

GMm ..
oI
r
where M is the mass of the earth , m is the mass of the apple, and r is the distance between the
centers. 7 is unit vector that points radially away from the earth. Using our operational definition,
the gravitational field a distance r from the center of the earth is

F=-

(1.12)

—‘?';"f (1.13)

(o]

The next step is to define a gravitational scalar field which we will call the gravitational potential V.
Using equation (1.5)

V(1) - V(1) = [ gl (1.14)

Example 1.3

Starting with the gravitational field (1.14), Find the gravitational potential an arbitrary distance r
from the center of the the earth. Assume r > Rearth.

Solution: Substituting equation (1.14) and taking r, to be at infinity where the potential due to the

earth should be zero, and r, = r an arbitrary distance from the center of the earth we obtain
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V(r)-0= —J’;g [/

Now if we integrate along a line coming radially in from infinity to r

v(r):—I;gG'z/'er:—g +0 . (1.15)

r

At sea level r is the radius of the earth so the gravitational potential is for all practical purposes
constant.

To find the potential energy U of an apple a distance r from the center of the earth merely multiply
V by the mass of the apple m.

U= mV = —Germ. (1.16)

An inverse r potential is plotted in(1.16) (a) and the corresponding contour map of the potential is
shown in Figure 1.3 (b). The plot has been truncated because of the singularity at r =0. The
contour lines are called equipotential lines. The contour map is just a 2 — D representation of a 3 —
D situation. The equipotentials are not lines but surfaces that form concentric spheres about the
mass. Our representations are limited by the medium of the 2-D paper this book is printed upon.
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(b)
Figure 1.3
(@) an inverse r potential is plotted across the x-y plane. The singularity at the origin
has been truncated. (b) A contour map of the inverse r potential in part a.

Figure 1.3 is very suggestive of a deep hole and this analogy gives us a way to conceptually
interpret the potential. If our apple is placed in the potential, it will tend to roll down the potential
hill towards the deep hole at the origin. The force on our apple will be greatest where the potential
is steepest, i.e., where the gradient of the potential is greatest in magnitude. Also note that the
force will be down the potential hill opposite to the gradient. Thus, the potential provides a visual
means for displaying information about the fields. And as you might guess, the field lines] can be
found directly from the contour map by noting that the gravitational field is found from the
potential by taking the gradient.

g=-VV. (1.17)

As we saw in section 1.3, the gradient is always perpendicular to the contour lines which means

we can map out the field lines by sketching lines that are always perpendicular to the equipotential
lines. For the simple distribution of mass shown in Figure 1.3 the field lines form radial spokes
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Figure 1.4
The gravitational field lines are always perpendicular to the equipotential lines.

towards the origin as shown in Figure 1.4. To understand more about the relation between scalar
fields and vector fields it is instructive to look at fluids.

1.5 Fluids & Pressure.

Compared to solids fluids seem almost alive, magical. They flow, change form to accommodate
the surroundings, produce gurgling sounds, and refract light to produce shimmer. There are few
things that can match the majesty of a waterfall or the serenity of a deserted beach. What causes
fluids to flow? As with solids, motions can only be produced by unbalanced forces so what is the
nature of the forces in a fluid? The answer to our question can be quite complex so we will limit
the discussion by only considering fluids with no viscosity. Such fluids are called inviscid which
means there are no frictional effects. Slowly moving thin fluids, such as air and alcohol,
approximate inviscid fluids; whereas, Prell shampoo and honey are examples of highly viscous
fluids.

If the fluid is inviscid, there can be no drag or shear between the liquid and any surface it touches
or between parts of the liquid that are in contact. This means the only force an inviscid fluid can
exert against a boundary is normal to the boundary. The component of the force perpendicular to
the boundary is caused by a pressure. We define the pressure to be the normal force F « /i per unit
area where 7 is the unit vector normal to the surface.

P=— . (1.18)
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The SI unit for pressure isa N/m”>  which is called a Pascal.

It's important to realize that pressure always acts against a boundary. The boundary need not be
the actual boundary between the fluid and an object. It can be an imagined boundary within the
fluid which will allow us to analyze how pressure contributes to the motion of a fluid. In an
inviscid fluid, pressure is a scalar; however, force is a vector so we might expect on vector
considerations alone that the two are related by the gradient. We will now prove this. Consider a
slab of fluid of thickness Ax that is a part of a much larger body of fluid as shown in figure
Figure 1.5. The boundaries of the slab are imaginary and are just to make our discussion easier to
visualize. On the left side of the slab the pressure is P and on the right side the pressure is P + AP.
Note that the imbalance in the pressure will cause an imbalance in the forces. If AP is negative,
such that, the pressure on the right side is less than the left, then the slab will move to the right.

P P+ AP
—p —
>
X x+Ax X
Figure 1.5

A thin slab of liquid experiencing a pressure gradient.

Summing the forces in the x direction on our slab we find

AF = +PA — (P + AP)A = —AAP

X

where A is the area of the face of the slab normal to the force. Note that if we divide both sides by
the volume

AV = AAx
so that

i _ —AP

V  AAX

Cancelling the area and taking the limit as Ax becomes infinitesimal:

F_ dpP
= x=-—_ 1.19
f Y X (1.19)

We could have just as easily had pressure gradients in the y and z directions as well so the formula
readily generalizes to three dimensions using the Del operator.

f =-VP Force density  (1.20)
The minus sign in equation (1.20) is important because the gradient always points towards the
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maximum in the scalar function. The force on our slab of fluid will always be towards lower
pressure which is opposite to the direction of the gradient.

Equation (1.20) gives the formal vector relation between the force and the pressure. At first the
left—hand side might seem a bit strange, but it is only the force per unit volume—a force density.
When dealing with fluids, it is natural to use the force per unit volume because although we chose
an imaginary slab of the fluid, there is no real boundary separating that slab from the rest of the
fluid. By dividing out the volume, we have rid ourselves of considering anything related
specifically to the size of the slab. This can be seen by considering the gravitational force acting
upon our slab.

F=-mgj

which depends explicitly on the mass of our particular slab. By using the force per unit volume we
have

—

f=-pgj (1.21)

where p is the ordinary mass density. Note equation (1.21) is independent of the size of the
imaginary slab which is convenient. Just as the force is the mass times the acceleration, the force
density is the mass density times acceleration.

1.6 Hydrostatics

Hydrostatics is the study of fluids at rest. As in mechanics, just because the fluid is at rest does
not mean there are no forces present; rather, the forces are in equilibrium. If no forces are present,
there will be no pressure. Pressure is the result of forces acting on a fluid. Of the cases we
encounter most often in every day life, gravity plays a major role in establishing the pressure
within a fluid. To determine the pressure we must sum the forces acting upon a unit volume of the
fluid as shown in Figure 1.6. There is the force due to gravity pulling it down and the pressure
gradient holding it up. There are no other forces so these two forces must be in equilibrium.

A _ap
Ay ¢|
v P8
Figure 1.6

A thin slab of fluid in equilibrium with gravity.

Summing the force densities,

Sf =-VP -pg =0 (1.22)

where the minus sign on the gradient is important because the force must point opposite to the
gradient. Using
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note that the pressure on the top must be less than the pressure on the bottom inorder for the slab of
fluid to be in equilibrium with gravity, so the gradient points down and is in negative ... direction.
The equation that governs equilibrium is

_dP_ =0. (1.23)

dy
Equation(1.23) governs any fluid at rest in a uniform gravitational field g. For incompressible
fluids, such as water, where the density is a constant the solution of (1.23) is simple, but for air
and other gases the density may not be constant, and the solution becomes very tricky because the
density is related to other factors, such as temperature. In fact, only for certain cses when the
density satisfies a thermodynamic equation of state, such as the ideal gas law, does equation (1.23)
even have a solution. If we allow p to arbitrarily vary with pressure, the solution often collapses
to a point of infinite density. We will show how to solve equation (1.23) for an incompressible
fluid, and the solution for an ideal gas will be left as a homework problem.

Example 1.4
The top surface of tank of water is at atmospheric pressure P_. Find the pressure as a function of
depth & below the top surface.

Solution: Since water is an incompressible fluid, the density is a constant, and we may solve
equation (1.23) by separating variables.

Integrating y from [0, —/]
-h
I dP = -pg IO dy
P=P, +pgh (1.25)

where p and g are constants.
Equation (1.25) gives the pressure as a function of depth in an incompressible fluid whose top
surface is at a pressure P_. This pressure is determine by two things: 1) the forces acting upon the

fluid (in this case gravity and the pressure gradient) and 2) the trivial equation of state p =
constant.

Consider again our solution (2-29) for the pressure in an incompressible fluid. If the air pressure
at the top of the tank is increased from P, to P', the pressure at a depth 4 becomes

P =P'+ pgh,
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that 1s, the change in pressure is passed undiminished to all points within the fluid. This is known
as Pascal's principal.

Pascal's Principle

A change in pressure is transmitted undiminished to all parts of the fluid.

Your first reaction might be, "Wait, if the pressure changes, doesn't the force change, and then,
won't the equilibrium will be upset?" The answer is no. The force due to the pressure depends
only on the pressure gradient across the slab. The pressure on the top of the slab pushes down and
it will be increased by the same amount as the pressure on the bottom of the slab which pushes up.
Thus, since the force depends upon the gradient of the pressure, changing the pressure by any
constant amount will not change the force.

Example 1.5
Pascal's principle is the foundation of all hydraulic apparatus. For the hydraulic lift shown below

the circular piston 2 has a radius twice that of piston 1. If a downward force F, is applied to piston
1, find the force that must be applied to piston 2 to keep it stationary. Neglect the mass of the
pistons.

F
2

<4

~
~

. -/
Figure 2.7
A simple hydraulic lift.

Solution: If the two pistons are at the same height, the pressure acting on both will be the same.
The pressure will be determined by the forces acting upon the fluid. Summing the forces on piston
1,

SF, = PA, - PA, —F, =0

where air pressure P, pushes down on piston 1, and the pressure P pushes up. Thus,

P:%Hz. (1.26)

This same pressure acts up on piston 2, but it is distributed over a larger area, and will give rise to
a larger force.

SF,= PA, - P,A,—F,=0
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Substituting P in equation (1.26),
i Fl - F2 =0
A

2
r
F2=r2—2|:1 =4F (1.27)
1
There are two points to note. First, by making the area of the first piston very small compared to
the second, it is quite possible to attain a very large mechanical advantage. Second, note that the
air pressure contribution cancels out of (1.27) because it acts on both pistons.

We are in a position to understand why things float which follows from Archimedes' principle.
Archimedes' Principle

Any body wholly or partially submerged in a fluid is buoyed up
by a force equal to the weight of the displaced fluid.

We will now prove Archimedes' principle by considering the floating object of mass m shown in

Figure 1.7.
$ v

Volume of
object Volume of
h displaced fluid
m
Figure 1.7

A partially floating object.

Summing the forces acting upon the object and noting that the pressure gradient occurs over a
height A,

Z F,=APA-mg =0
Using the volume of the displaced fluid V,, = Ah

A—hva—mgzo (1.28)

The pressure difference between the bottom and the top is
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AP = P, +pgh—P, =pgh
where p; is the density of the fluid so equation (1.28) becomes
p;gV, — mg = 0. (2-36)

Note that p,gV/, is the buoyant force due to the pressure gradient, and since m;= p, V), is the mass
of the displaced fluid we have proved Archimedes' principle. An object will float when the mass
of the displaced fluid equals the mass of the object.

1.7 Gradients in Hydrodynamics

Unbalanced forces on a fluid will cause it to flow, to change in time, to be dynamic.
Hydrodynamics is the study of fluids in motion. As we might guess from our previous
discussion, any disturbance whose sole effect is to cause a pressure gradient will create an
unbalanced force on the fluid causing it to flow. The direction of flow is opposite to the gradient,
1.e., towards low pressure.The geometry of the flow can be depicted by plotting lines of constant
pressure called isobars.

Figure 1.8
Isobars and lines of force for an ideal region of low pressure

Consider the cylindrical region of low pressure as shown in Figure 1.8. The vector field lines are
lines of force in the fluid and are perpendicular to the isobars. Note how similar this is to the
gravitational case shown in Figure 1.4. The theory for this type of fluid flow is referred to as
potential theory. For low velocity flows without turbulence (called laminar flows) and other
rotational effects (laminar flow in an irrotaional fluid), pieces of the fluid will approximately follow
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a trajectory along the lines of force. The force lines approximately map the velocity field for the
flow. The field lines mapping the velocity are called streamlines. For steady state flow in which
the velocity of the fluid at any point remains constant in time, the streamlines correspond to
trajectories of small chunks of the fluid. But for time dependent flows, such as, when turbulence
is present, the streamline pattern changes in time, and any given streamline will change long before
a particle could travel along it, and so a streamline cannot represent the trajectory of a chunk of the
fluid.

The shape of the isobars are determined by the cylindrical symmetry of the region. It is usually
easy to deduce the isobars from the symmetry of the boundary conditions. Given one isobar, the
next isobar out will look much like the previous; however, as we get further away from any region
we loose detail until very far away the region will look like a point, and the isobars will be
characteristic circles. Thus, isobars close to the region will mimic the shape of the region
boundary, and then, will gradually soften into circles as the distance increases.

Example 1.6
Given the isobar

Figure 1.9
shown in Figure 1.9, sketch four more isobars.

Solution: The first isobar will look much like Figure 1.9, and further out the isobars will
approach circles as the details of the source are lost.

Figure 1.10
The inner isobars look like the first and the outer isobars look like circles.
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Once the isobars are drawn, it is relatively easy to obtain the streamlines. If the only force causing
the flow is the pressure gradient, then the streamlines will point in the direction opposite to the
pressure gradient. Since the pressure does not change along an isobar, the gradient must point in a
direction perpendicular to the isobars and towards high pressure (uphill). The streamlines will also
be perpendicular to the isobars but will flow towards low pressure.

It is important to realize the limitations of this picture we have developed because it is highly
idealized. In many real systems there are nonconservative forces, such as friction between the
fluid and a solid surface or between counter flowing layers of fluid, and in the earth's atmosphere
the coriolis force, which invalidates the potential theory we have developed. If nonconservative
forces are present, the streamlines will not necessarily be perpendicular to the isobars, and in fact,
the exact opposite may be true.

Consider a hurricane in the northern hemisphere. As the air starts rushing in towards the low
pressure center, the coriolis force causes a counter clockwise circulation about the low center. In
such a case, the streamlines actually become almost parallel to the isobars

isobar Streamline
\

N

(b)
Figure 1.11
(@) In a hurricane the coriolis force causes the streamlines to be parallel to the isobars.

(b) Hurricane Hortense.

as shown in Figure 1.12. The coriolis force explains why low pressure storms are so stable. The
air cannot immediately rush in to dissipate the low pressure; instead, it gets bound up circulating
about the low pressure, and the storm forms a stable low pressure cell. You can also see why
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hurricanes never hit the equator where the coriolis force is zero. Only when the force F is
conservative are the streamlines perpendicular to the isobars, i.e., when

$Fed =0 (1.29)
= F/V = — VP. (1.30)

We can now handle more complex situations. What would the velocity field look like for a low
pressure region next to a high pressure region if there are no nonconservative forces? If we plot
the pressure across the x—y plane, it is very suggestive of a mountain next to a valley
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Figure 1.13
A plot of the pressure for a high pressure region next to a low pressure region.

as in Figure 1.13. The very high and very low isobars form concentric circles, but the isobar
midway between the peak and the valley is a straight line. The isobars on either side of this

straight line are flattened on the side facing the line.

Looking down from above we can make a contour representation of the isobars,
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Figure 1.14
A contour map of a high pressure region next to a low pressure region.

The streamlines can be sketched in by drawing the lines perpendicular to the isobars.

/

Figure 1.15
The streamlines are perpendicular to the isobars.

The flow will be greatest where the pressure surface is steepest, along a line joining the centers of
the high and low pressure cells. You can see from Figure 1.13 that this regions forms a very steep
cliff where the flow will be very large.

We have found graphical techniques which allow us to easily picture and interpret the gradient of a
scalar field as a flow down a potential hill. It is quite amazing that the vector information on the
flows can be obtained from a scalar pressure field that is much easier to work with than a vector
field. Next we will consider even more powerful mathematical theorems to describe
hydrodynamics.
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