
Chapter 1

Pressure, Potentials, And
The Gradient

1.1  Field Theories in Physics

You are already familiar with the physics of forces, and you understand that an object can only beaccelerated if a force acts on it.  We have however avoided the fundamental questions of exactlyhow one object places a force upon an other object.  You may respond, "How silly,  a force isplaced upon an object when another object pushes or pulls it."  But there are forces for which thebodies do not need to be in contact, for example, gravity where it is possible for one planet toattract another even though the two are separated by a very large distance.  This "action at adistance" has stymied many of the great minds, and the full understanding of this problem hascome only within the last forty years.  Unlike other theories, it is not the work of an isolatedgenius, but is the culmination of centuries of work by many people.
The question we will answer is how can one object place a force upon another without anyapparent contact between the two whatsoever?  Something must go between the two objects tocarry the force, and we'll call it the field.  We will direct our attention from the forces to the fieldsthemselves.  Note that this raises the level of abstraction considerably, but you should not forgetthat the reason for obtaining the field is to find the force.  Always ask your self, "Now that I havefound this field,  what force would this field place upon my system."  This course is the study ofclassical field theories.  What properties must the fields have, and how do we describe these field?
It turns out, as you will see, that classical field theories do not fundamentally answer the questionposed because one cannot touch or feel a classical electric field.  More importantly, theelectromagnetic fields are not conserved at all!  They can be created and destroyed.  Well, if theycannot be seen or felt and they are not conserved, do they exist?  Might they be nothing more thana mathematical trick?
  There is no way yet devised to tell whether the classical electromagnetic fields in fact do exist, butin any case, the question is not relevant because a modern theory with the unwieldy name ofQuantum Electrodynamics (referred to as QED) has combined field theory, relativity, and quantummechanics into a powerful theory that agrees with experiment to 14 decimal places!  In QED theelectric and magnetic field are combined to form discreet packets or quanta called photons.  Thesephotons sometimes behave as particles and they can be seen and counted by machines.  In factunder special circumstances,  it is possible for the human eye to "see" one photon.
In relativity mass and energy are equivalent, and it is possible, therefore, to create mass fromphotons, and conversely, to annihilate matter and antimatter to produce photons.  This is done
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quite easily in modern particle accelerators.  Relativity gives us a general conservation law called



Conservation of Mass-energy, and although the number of photons is not conserved and the massis not conserved, the total amount of photons plus mass is conserved.  Thus in modern physics,  itis possible to show that photons, packets of electromagnetic fields, do exist and usefulconservation laws have been formulated.
While QED may be too complicated to study here, we will introduce you to the basics behindclassical field theory.  Uses of classical fields range from thermodynamics and hydrodynamics toelectromagnetics and computer science.  They are found in virtually every field of science that usessophisticated mathematics.
The fields are sometimes scalar and sometimes vector in nature so we will use the calculus  you arealready familiar with as well as vector calculus.  Vector calculus is in some ways much like thecalculus you have already grown to love, however in many ways, vector calculus is far different.Many of you will be taking vector calculus concurrently and will find that this course will overlapsomewhat with vector calculus.  We will not dwell on the mathematics per se; rather, we will studythe physical properties of vector fields.
1 .2  Path Integrals and the Gradient.

There are special vector fields that can be related to a scalar field.  There is a very real advantage indoing so because scalar fields are far less complicated to work with than vector fields.  A vectorfield may be derived from a scalar field any time the vector field is conservative.  A conservativevector field F√ is required to have a zero path integral over any closed path , i.e.,
™  F√ · dæ√   =  0. (1.1)

Note the conservative field definition follows from mechanics where the work is the path integralof the force:
W  =  ™  F√ · dæ√ (1.2)

The energy of a mechanical system is conserved when the work done around all closed paths iszero.
In general, a path integral is not like a regular integral, for example,  the integral we all know andlove deals with functions.  For a function g whose derivative is G:
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G= (1.3)

the fundamental lemma of calculus states that
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where g(x) represents a well-defined function whose derivative exists.  This is the integraldeveloped in introductory calculus,  but it is not the only definition of the integral.  There areintegrals called path integrals which have quite different properties.  In general, a path integraldoes not define a function because the integral will depend on the path.  For different paths the
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only on the end points as in the fundamental lemma (1.4).  Then, a scalar field U will be related tothe vector field F√ by
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The significance of the minus sign will be discussed in section 2.2.  U is the potential energy if Fis the force.
Because of the dependence on path, the path integral is also more complex than the fundamentallemma.  For instance, the fundamental lemma can be inverted by differentiating as in equation(2-3), but the path integral needs a special operator to invert it.  The need for a special operator isclear if we write a path integral in the Cartesian representation.  Then
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where Fx,  Fy,  and Fz are the components of the vector field.  In order for a relation like the
fundamental lemma to exist,  Fx   must be the derivative of f  with respect to x.  Thus, for equation(1.6) to be satisfied,
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We can satisfy all of the conditions (1.7) by defining the 'Del' operator.  In the Cartesianrepresentation
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(1.8)

An operator in nothing new to you.  It simply represents a set of instructions for the performanceof an operation on whatever lies to the right of the operator.  For instance, the cross product sign ªis an operator that tells you to use the determinant rule to multiply two vectors together, and d/dxinstructs you to take the derivative with respect to x of anything that lies to the right.
Similarly,  del operates on whatever resides to the right of it and basically follows the rules ofvector multiplication.   Because the del is an operator, it has no magnitude, and therefore, nomeaning by itself.  It only has meaning when it operates on something.  Since del has nomagnitude and is always a vector, we needn't bother writing an arrow over it.
We can transform del to other coordinate systems by looking at how the differentials behave.  Inspherical polar coordinates we have

{dx, dy, dz} Û  {dr, rdœ, r sinœ dƒ}
which when we transform del gives:
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As a reference note remember that transforming del works fine for del operating on a scalar, butbecomes more complex when del operates on a vector.  Expression (1.9) will not hold for the polarform when del operates on a vector.
Using del, equation (1.7) is an operation called the gradient.  The Cartesian representation of thegradient is

∇ = + +f i
f

x
j

f

y
k

f

z
ˆ ˆ ˆ∂
∂

∂
∂

∂
∂

(1.10)
where it's important to note that the result is a vector, and herein,lies the importance.  It is possibleto obtain a vector field §É from a scalar field É by utilizing the gradient.
Example 1.1

f(x,y,z)  =  3x2y2  + 4x  -  6y   Find a) the gradient of f, and b)  where the minimum value of foccurs.
Solution: a)     ∇ = +( ) + −( ) +f i
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∂
∂

3 4 3 6 02 2 2 2  = î(6xy2+ 4)  +  ∆ (6x2y - 6).
b)  The minimum in f occurs where its slope is zero or where §f  = 0.    õ

 î(6xy2+ 4)  +  ∆ (6x2y - 6)  =  0
In order for this to be true both the x and y components of the gradient ("slope") mustindependently go to zero.

6xy2+ 4  =  0   and   6x2y - 6  =  0
x = − 3

2
3      and   y = 4

9
3

1 .3  The Gradient

Of what use can the gradient be?  It looks horribly complicated, but as you will see, the power itgives us far outweighs its seeming complexity.  Moreover, it is not just a mathematical curiositybut a tool that you will use often because its geometrical interpretation makes it so important.  We'llstart with a one dimensional function f(x) to illustrate some of the properties then proceed to morecomplex situations.
Example 1.2Suppose a graph of f(x) looks like that shown in Figure 1.1 where to the left of xø the function has
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a positive slope, to the right a negative slope, and a maximum at xø.   Find where the gradient



points in the positive x direction and where the gradient points in the negative x direction.
Solution:  If f(x) only depends on x, then its y and z partial derivatives are zero so that

∇ =f f
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f

xxø
+ slope - slope

Figure 1.1
For a function of one dimension the gradient points

towards the place where the function has a maximum.

Since ıf/ıx  is the slope,   we see that the gradient is positive to the left of xø and negative to theright.  The gradient, thus, always will be a vector pointing towards xø, i.e., the direction of thegradient will always point to the place where the function has a maximum, and the magnitude ofthe gradient will be the slope of the function.
In actuality the gradient is just the generalization of slope to functions of more than one variable.  Ifwe consider the function f(x, y) to be a hill,  the gradient will point towards the top of the hill, andits magnitude gives the steepness of the hill.  Geologists and hikers implicitly employ the conceptof gradient when reading topographic maps.  When hiking in the mountains you quickly becomeaware of the effects of gravity, and it is because of these effects that we represent the locus ofpoints at a given height as a contour line on a topographic map.  Where contour lines are very closetogether,  the country will be very steep because the height changes quickly in a short distance, andthis means a large gradient.  Remember that the gradient is the change in the scalar function dividedby the change in distance.
Since the gradient is given by the change in the function, we can also determine the direction of thegradient at any point.  Note that a function, by definition, does not change along a contour line;therefore,  the change in the function must be perpendicular to the contour line.  If we combine thiswith the fact that the gradient always points towards the top of the hill, then we have a verypowerful and easy method for determining immediately from a contour plot where the gradient islarge and also its direction. A plot of a function and its associated contour map is shown in
Figure 1.2.  The gradient is shown at a few representative points on the contour map.  You  shouldpractice representing the gradient at other points
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Figure 1.2A function f(x,y) in (a), and its contour map in (b).  The two are not aligned.  Can you find whichplaces on the contour map correspond to places on the 3-D plot?

1 .4  Gravity

First we will move away from a description based on the force by defining a gravitational field g√.Let's return to Newton's problem.  Consider an apple starting from rest and accelerating freelyunder the influence of gravity.  The force of the earth's attraction causes the apple to fall, but how
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earth place a force on the apple?  Something must go from the earth to the apple to cause it to fall,i.e., the earth must exude something that places a force on the apple.  This something exuded bythe earth we call the gravitational field.  We can start by investigating the properties of thegravitational field.
To operationally define the gravitational field we note that since it is exuded by the earth, it shouldnot depend on the mass of the apple.  The force on the apple, however, does depend on the apple'smass so we can define the gravitational field by taking the force on the apple and dividing out theapple's mass.  We must be careful because if the earth produces a gravitational field, so should theapple (albeit small compared to the earth's).  So to get the field due to the earth, we should let themass of the apple go to zero.  Hence our operational definition of the field due to gravity is
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(1.11)

where F√ is the force due to gravity on our test apple, and the limit means that the mass of the appleshould be as small as possible.  If we define … to be up, the force on an apple will be
F√  =  - mg ∆

Of course it should be obvious why we have called the gravitational field g√:  it is nothing less thanthe acceleration due to gravity.  Note that the field g√ is the same for all objects a given distancefrom the earth's surface.
Newton's law of gravitation gives the force on our apple as

r
F

GMm

r
r= − 2
ˆ (1.12)

where M is the mass of the earth , m is the mass of the apple, and r is the distance between thecenters.  ë  is unit vector that points radially away from the earth.  Using our operational definition,the gravitational field a distance r from the center of the earth is
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The next step is to define a gravitational scalar field which we will call the gravitational potential  V.Using equation (1.5)
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Example 1.3Starting with the gravitational field (1.14), Find the gravitational potential an arbitrary distance rfrom the center of the the earth.  Assume r > Rearth.
Solution:  Substituting equation (1.14) and taking r1 to be at infinity where the potential due to the
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earth should be zero, and r2 = r an arbitrary distance from the center of the earth we obtain
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Now if we integrate along a line coming radially in from infinity to r
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At sea level r  is the radius of the earth so the gravitational potential is for all practical purposesconstant.
To find the potential energy U of an apple a distance r from the center of the earth merely multiplyV by the mass of the apple m.

U  =  mV  =   − GMm

r2 . (1.16)

An inverse r potential is plotted in(1.16) (a) and the corresponding contour map of the potential isshown in Figure 1.3 (b).  The plot has been truncated because of the singularity at r = 0.  Thecontour lines are called equipotential lines.  The contour map is just a 2 - D representation of a 3 -D situation.  The equipotentials are not lines but surfaces that form concentric spheres about themass.  Our representations are limited by the medium of the 2-D paper this book is printed upon.
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(b)
Figure 1.3

(a) an inverse r potential is plotted across the x-y plane.  The singularity at the origin
has been truncated.  (b) A contour map of the inverse r potential in part a.

Figure 1.3 is very suggestive of a deep hole and this analogy gives us a way to conceptuallyinterpret the potential.  If our apple is placed in the potential, it will tend to roll down the potentialhill towards the deep hole at the origin.  The force on our apple will be greatest where the potentialis steepest,  i.e., where the gradient of the potential is greatest in magnitude.  Also note that theforce will be down the potential hill opposite to the gradient.  Thus, the potential provides a visualmeans for displaying information about the fields.  And as you might guess, the field lines1  can befound directly from the contour map by noting that the gravitational field is found from thepotential by taking the gradient. g√  =  - §V . (1.17)
As we saw in section 1.3, the gradient is always perpendicular to the contour lines which meanswe can map out the field lines by sketching lines that are always perpendicular to the equipotential

Classical Fluids, Chapter 1 -9-

lines.  For the simple distribution of mass shown in Figure 1.3 the field lines form radial spokes



M

Figure 1.4
The gravitational field lines are always perpendicular to the equipotential lines.

towards the origin as shown in Figure 1.4.  To understand more about the relation between scalarfields and vector fields it is instructive to look at fluids.
1 .5  Fluids & Pressure.

Compared to solids fluids seem almost alive, magical.  They flow, change form to accommodatethe surroundings, produce gurgling sounds, and refract light to produce shimmer.  There are fewthings that can match the majesty of a waterfall or the serenity of a deserted beach.  What causesfluids to flow?  As with solids, motions can only be produced by unbalanced forces so what is thenature of the forces in a fluid?  The answer to our question can be quite complex so we will limitthe discussion by only considering fluids with no viscosity.  Such fluids are called inviscid whichmeans there are no frictional effects.  Slowly moving thin fluids, such as air and alcohol,approximate inviscid fluids;  whereas, Prell shampoo and honey are examples of highly viscousfluids.
If the fluid is inviscid, there can be no drag or shear between the liquid and any surface it touchesor between parts of the liquid that are in contact.  This means the only force an inviscid fluid canexert against a boundary is normal to the boundary.  The component of the force perpendicular tothe boundary is caused by a pressure.  We define the pressure to be the normal force F√ · Ñ per unitarea  where Ñ is the unit vector normal to the surface.

P
F n

A
= ⋅

r
ˆ   . (1.18)
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The SI unit for pressure is a    N/m2    which is called a  Pascal.
It's important to realize that pressure always acts against a boundary.  The boundary need not bethe actual boundary between the fluid and an object.  It can be an imagined boundary within thefluid which will allow us to analyze how pressure contributes to the motion of a fluid.  In aninviscid fluid, pressure is a scalar; however, force is a vector so we might expect on vectorconsiderations alone that the two are related by the gradient.  We will now prove this.  Consider aslab of fluid of thickness Îx  that is a part of a much larger body of fluid as shown in figureFigure 1.5.  The boundaries of the slab are imaginary and are just to make our discussion easier tovisualize.  On the left side of the slab the pressure is P and on the right side the pressure is P + ÎP.Note that the imbalance in the pressure will cause an imbalance in the forces.  If ÎP is negative,such that, the pressure on the right side is less than the left, then the slab will move to the right.

xx x + Îx

P P + ÎP

Figure 1.5
A thin slab of liquid experiencing a pressure gradient.

Summing the forces in the x  direction on our slab we find
     ÎFx  =  + PA  -  (P  +  ÎP)A   =  - A ÎP
where A is the area of the face of the slab normal to the force.  Note that if we divide both sides bythe volume ÎV  =  A Îxso that
                                  F

V

AP

A x
x = −

∆

Cancelling the area and taking the limit as Îx becomes infinitesimal:
    f = F

V

dP

dx
x = − (1.19)

We could have just as easily had pressure gradients in the y and z directions as well so the formulareadily generalizes to three dimensions using the Del operator.
f   =  -  §P Force density     (1.20)
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The minus sign in equation (1.20) is important because the gradient always points towards the



maximum in the scalar function.  The force on our slab of fluid will always be towards lowerpressure which is opposite to the direction of the gradient.
Equation (1.20) gives the formal vector relation between the force and the pressure.  At first theleft-hand side might seem a bit strange, but it is only the force per unit volume--a force density.When dealing with fluids, it is natural to use the force per unit volume because although we chosean imaginary slab of the fluid,  there is no real boundary separating that slab from the rest of thefluid.  By dividing out the volume, we have rid ourselves of considering anything relatedspecifically to the size of the slab.  This can be seen by considering the gravitational force actingupon our slab.

F√  =  - mg ∆
which depends explicitly on the mass of our particular slab.  By using the force per unit volume wehave

f√   =  -  ® g ∆ (1.21)
where ® is the ordinary mass density.  Note equation (1.21) is independent of the size of theimaginary slab which is convenient.  Just as the force is the mass times the acceleration, the forcedensity is the mass density times acceleration.

1 .6  Hydrostatics

Hydrostatics is the study of fluids at rest.  As in mechanics, just because the fluid is at rest doesnot mean there are no forces present; rather, the forces are in equilibrium.  If no forces are present,there will be no pressure.  Pressure is the result of forces acting on a fluid.  Of the cases weencounter most often in every day life,  gravity plays a major role in establishing the pressurewithin a fluid.  To determine the pressure we must sum the forces acting upon a unit volume of thefluid as shown in Figure 1.6.  There is the force due to gravity pulling it down and the pressuregradient holding it up.  There are no other forces so these two forces must be in equilibrium.
- ÎP

- ®g
Îy

Figure 1.6
A  thin slab of fluid in equilibrium with gravity.

Summing the force densities,
Í fy   =  - §P  -  ®g   =  0 (1.22)

where the minus sign on the gradient is important because the force must point opposite to the
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gradient.  Using



∇ =P
dP

dy
ĵ ,

note that the pressure on the top must be less than the pressure on the bottom inorder for the slab offluid to be in equilibrium with gravity, so the gradient points down and is in negative … direction.The equation that governs equilibrium is
− − =dP

dy
gρ 0 . (1.23)

Equation(1.23) governs any fluid at rest in a uniform gravitational field g.  For incompressiblefluids, such as water, where the density is a constant the solution of (1.23) is simple, but for airand other gases the density may not be constant, and the solution becomes very tricky because thedensity is related to other factors, such as temperature.  In fact, only for certain cses when thedensity satisfies a thermodynamic equation of state, such as the ideal gas law, does equation (1.23)even have a solution.  If we allow ® to arbitrarily vary with pressure, the solution often collapsesto a point of infinite density.  We will show how to solve equation (1.23) for an incompressiblefluid, and the solution for an ideal gas will be left as a homework problem.
Example 1.4The top surface of tank of water is at atmospheric pressure Pø.  Find the pressure as a function ofdepth h below the top surface.
Solution:  Since water is an incompressible fluid, the density is a constant, and we may solveequation (1.23) by separating variables.

dP  =  -  ®g dy (1.24)
Integrating y from [0, -h]

dP g dy
P

P h

o
∫ ∫= −

−
ρ

0

P  =  Pø  +  ® g h (1.25)
where ® and g are constants.
Equation (1.25) gives the pressure as a function of depth in an incompressible fluid whose topsurface is at a pressure Pø.  This pressure is determine by two things:  1) the forces acting upon thefluid (in this case gravity and the pressure gradient)  and 2) the trivial equation of state ® =constant.
Consider again our solution (2-29) for the pressure in an incompressible fluid. If the air pressureat the top of the tank is increased from Pø to P', the pressure at a depth h becomes

P = P' + ®gh,
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that is, the change in pressure is passed undiminished to all points within the fluid.  This is knownas Pascal's principal.
Pascal's Principle

A change in pressure is transmitted undiminished to all parts of the fluid.

Your first reaction might be, "Wait, if the pressure changes, doesn't the force change, and then,won't the equilibrium will be upset?"  The answer is no.  The force due to the pressure dependsonly on the pressure gradient across the slab.  The pressure on the top of the slab pushes down andit will be increased by the same amount as the pressure on the bottom of the slab which pushes up.Thus, since the force depends upon the gradient of the pressure, changing the pressure by anyconstant amount will not change the force.
Example 1.5Pascal's principle is the foundation of all hydraulic apparatus.  For the hydraulic lift shown below
the circular piston 2 has a radius twice that of piston 1.  If a downward force F1 is applied to piston1,  find the force that must be applied to piston 2 to keep it stationary.  Neglect the mass of thepistons.

F F

P P

1 2

Figure 2.7
A simple hydraulic lift.

Solution:  If the two pistons are at the same height, the pressure acting on both will be the same.The pressure will be determined by the forces acting upon the fluid.  Summing the forces on piston1,
ÍF1  =  PA1  -  PøA1  - F1  = 0

where air pressure Pø pushes down on piston 1, and the pressure P pushes up.  Thus,
P

F

A
P= +1

1
o. (1.26)

This same pressure acts up on piston 2, but it is distributed over a larger area, and will give rise toa larger force.
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ÍF2 =  PA2   -  PøA2 - F2 = 0



Substituting P in equation (1.26),
A

A
F F2

1
1 2 0− =

F
r

r
F F2

2
2

1
2 1 14= = (1.27)

There are two points to note.  First,  by making the area of the first piston very small compared tothe second, it is quite possible to attain a very large mechanical advantage.  Second, note that theair pressure contribution cancels out of (1.27) because it acts on both pistons.
We are in a position to understand why things float which follows from Archimedes' principle.

Archimedes' Principle

Any body wholly or partially submerged in a fluid is buoyed up
by a force equal to the weight of the displaced fluid.

We will now prove Archimedes' principle by considering the floating object of mass m shown inFigure 1.7.

h

- §P

- ®g

Volume ofdisplaced fluid
Volume ofobject

Figure 1.7
A partially floating object.

Summing the forces acting upon the object and noting that the pressure gradient occurs over aheight h,
F PA mgy = − =∑ ∆ 0

Using the volume of the displaced fluid VD = Ah
∆P

h
V mgD − = 0 (1.28)

The pressure difference between the bottom and the top is
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ÎP  =  Pø + ®fgh - Pø = ®fgh
where ®f  is the density of the fluid so equation (1.28) becomes

®f g VD  -  mg  =  0. (2-36)
Note that ®fgVD is the buoyant force due to the pressure gradient, and since mf =  ®f VD is the massof the displaced fluid we have proved Archimedes' principle.  An object will float when the massof the displaced fluid equals the mass of the object.
1 .7  Gradients in Hydrodynamics

Unbalanced forces on a fluid will cause it to flow, to change in time, to be dynamic.Hydrodynamics is the study of fluids in motion.  As we might guess from our previousdiscussion, any disturbance whose sole effect is to cause a pressure gradient will create anunbalanced force on the fluid causing it to flow.  The direction of flow is opposite to the gradient,i.e., towards low pressure.The geometry of the flow can be depicted by plotting lines of constantpressure called isobars.

Low

Figure 1.8
Isobars and lines of force for an ideal region of low pressure

Consider the cylindrical region of low pressure as shown in Figure 1.8.  The vector field lines arelines of force in the fluid and are perpendicular to the isobars.  Note how similar this is to thegravitational case shown in Figure 1.4.  The theory for this type of fluid flow is referred to aspotential theory.  For low velocity flows without turbulence (called laminar flows) and other
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rotational effects (laminar flow in an irrotaional fluid), pieces of the fluid will approximately follow



a trajectory along the lines of force.  The force lines approximately map the velocity field for theflow.  The field lines mapping the velocity are called streamlines.  For steady state flow in whichthe velocity of the fluid at any point remains constant in time, the streamlines correspond totrajectories of small chunks of the fluid.  But for time dependent flows, such as, when turbulenceis present, the streamline pattern changes in time, and any given streamline will change long beforea particle could travel along it, and so a streamline cannot represent the trajectory of a chunk of thefluid.
The shape of the isobars are determined by the cylindrical symmetry of the region.  It is usuallyeasy to deduce the isobars from the symmetry of the boundary conditions.  Given one isobar, thenext isobar out will look much like the previous; however, as we get further away from any regionwe loose detail until very far away the region will look like a point, and the isobars will becharacteristic circles.  Thus, isobars close to the region will mimic the shape of the regionboundary, and then, will gradually soften into circles as the distance increases.
Example 1.6Given the isobar

Figure 1.9shown in Figure 1.9, sketch four more isobars.
Solution:  The first isobar will look much like Figure 1.9,  and further out the isobars willapproach circles as the details of the source are lost.

Figure 1.10
The inner isobars look like the first and the outer isobars look like circles.
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Once the isobars are drawn, it is relatively easy to obtain the streamlines.  If the only force causingthe flow is the pressure gradient, then the streamlines will point in the direction opposite to thepressure gradient.  Since the pressure does not change along an isobar, the gradient must point in adirection perpendicular to the isobars and towards high pressure (uphill).  The streamlines will alsobe perpendicular to the isobars but will flow towards low pressure.
It is important to realize the limitations of this picture we have developed because it is highlyidealized.  In many real systems there are nonconservative forces, such as friction between thefluid and a solid surface or between counter flowing layers of fluid, and in the earth's atmospherethe coriolis force, which invalidates the potential theory we have developed.  If nonconservativeforces are present, the streamlines will not necessarily be perpendicular to the isobars, and in fact,the exact opposite may be true.
Consider a hurricane in the northern hemisphere.  As the air starts rushing in towards the lowpressure center, the coriolis force causes a counter clockwise circulation about the low center.  Insuch a case, the streamlines actually become almost parallel to the isobarsStreamlineisobar

(a)

(b)
Figure 1.11

(a) In a hurricane the coriolis force causes the streamlines to be parallel to the isobars.
(b) Hurricane Hortense.

as shown in Figure 1.12.  The coriolis force explains why low pressure storms are so stable.  Theair cannot immediately rush in to dissipate the low pressure; instead, it gets bound up circulating
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about the low pressure, and the storm forms a stable low pressure cell.  You can also see why



hurricanes never hit the equator where the coriolis force is zero.  Only when the force F√ isconservative are the streamlines perpendicular to the isobars, i.e., when
™  F√  •  dæ√   =  0   (1.29)

õ   F√/V  =  -  §P. (1.30)
We can now handle more complex situations.  What would the velocity field look like for a lowpressure region next to a high pressure region if there are no nonconservative forces?  If we plotthe pressure across the x-y plane, it is very suggestive of a mountain next to a valley

Figure 1.13
A plot of the pressure for a high pressure region next to a low pressure region.

 as in Figure 1.13.  The very high and very low isobars form concentric circles, but the isobarmidway between the peak and the valley is a straight line.  The isobars on either side of thisstraight line are flattened on the side facing the line.
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Looking down from above we can make a contour representation of the isobars,



Figure 1.14
A contour map of a high pressure region next to a low pressure region.

The streamlines can be sketched in by drawing the lines perpendicular to the isobars.

Figure 1.15
The streamlines are perpendicular to the isobars.

The flow will be greatest where the pressure surface is steepest, along a line joining the centers ofthe high and low pressure cells.  You can see from Figure 1.13 that this regions forms a very steepcliff where the flow will be very large.
We have found graphical techniques which allow us to easily picture and interpret the gradient of ascalar field as a flow down a potential hill.  It is quite amazing that the vector information on theflows can be obtained from a scalar pressure field that is much easier to work with than a vectorfield.  Next we will consider even more powerful mathematical theorems to describehydrodynamics.
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