Chapter 3 Equations of State

The simplest way to derive the Helmholtz function of a fluid is to directly integrate the
equation of state with respect to volume (Sadus, 1992a, 1994). An equation of state can be
applied to ether vapour-liquid or supercritical phenomena without any conceptual
difficulties. Therefore, in addition to liquid-liquid and vapour -liquid properties, it is aso
possible to determine transitions between these phenomena from the same inputs. All of the
physical properties of the fluid except idea gas are also simultaneously calculated. Many
equations of state have been proposed in the literature with either an empirical, semi-
empirical or theoretical basis. Comprehensive reviews can be found in the works of Martin
(1979), Gubbins (1983), Anderko (1990), Sandler (1994), Economou and Donohue (1996),

Wei and Sadus (2000) and Sengers et al. (2000).

The van der Waals equation of state (1873) was the first equation to predict vapour-liquid
coexistence. Later, the RedlichKwong equation of state (Redlich and Kwong, 1949)
improved the accuracy of the van der Waals equation by proposing a temperature
dependence for the attractive term. Soave (1972) and Peng and Robinson (1976) proposed
additional modifications of the RedlichhKwong equation to more accurately predict the
vapour pressure, liquid density, and equilibria ratios. Guggenheim (1965) and Carnahan and
Starling (1969) modified the repulsive term of van der Waals equation of state and obtained
more accurate expressions for hard sphere systems. Christoforakos and Franck (1986)

modified both the attractive and repulsive terms of van der Waals equation of state. Boublik

(1981) extended the CarnahanStarling hard sphere term to obtain an accurate equation for

hard convex geometries.
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In addition to modeling small and simple molecules, considerable emphasis has been placed
on modeling long and convex molecules. Based on theory of Prigogine (1957) and Flory
(1965), an equation for molecules treated as chains of segments, which is called Perturbed
Hard Chain-Theory (PHCT) was constructed by Beret and Prausnitz (1975) and Donohue
and Prausnitz (1978). To reduce the mathematical complexity of Perturbed-Hard Chain-
Theory, Kim et al. (1986) developed a simplified version of the theory by replacing the
complex attractive part by a smpler expression. At the amost same time, Vimalchand and
Donohue (1985) obtained a fairly accurate multipolar mixture calculation by using the
Perturbed Anisotropic Chain theory, and lkonomou and Donohue (1986) extended the
Perturbed Anisotropic Chain Theory to the Associated Perturbed Anisotropic Chain Theory

by taking into account the existence of hydrogen bonding.

Wertheim (1987) proposed a thermodynamic perturbation theory (TPT), which
accommodates hard-chain molecules. Chapman et a. (1988) generadized the TPT modd to
obtain the compressibility factor of a hard-chain of segments. Ghonasagi and Chapman
(1994) and Chang and Sandler (1994) modified TPT for the hardsphere chain by
incorporating structural information for the diatomic fluid (TPT-D). Sadus (1995) derived
the simplified thermodynamic perturbation theory—dimer (STPT-D) equation from TPT-D.
Sadus (1999b) later developed STPT-D to the empirical simplified thermodynamic
perturbation theory-dimer (ESTPT-D) equation, and tested the accuracy of the equation
against simulation data for hard-sphere chains containing up to 201 hard-sphere segments.
Sadus (1999 a) also derived an equation of state for hard convex body chains from the TPT

of hard sphere chains (Wertheim, 1987; Chapman et d., 1988).
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Jin et a. (1993), Povodyrev et a. (1996) and Kiselev (1997) devel oped theoretical crossover
equations of state for pure fluids and binary mixtures which incorporate the scaling laws
asymptotically close to the critical point and which are transformed into the regular classical
expansion far away from the critical point. Kiselev (1998) used the modified Patel-Teja
cubic equation of state (Patel and Teja, 1982) as a starting point to propose a general
procedure for transforming any classical equation of state into a crossover equation of state.
Wyczalkowska et al. (1999) also developed a global crossover equation of state, and Kiselev
et al. (2001) extended the crossover modification of the statistical-associating fluid theory
(Chapman et a., 1988, 1990) equation of state. Wyczalkowska et al. (2000) demonstrated
that both pure H,O and D,O obey a universal scaled crossover equation of state in the critical
region which satisfies corresponding state for the near-critica behaviour of the
thermodynamic properties. Abdulkadirova et al. (2002) extended the pure component to

binary mixtures (H,O + D»O) using a crossover equation of state.

In this chapter we will review equations of state for high pressure with particular emphasis

oncritical points calculations. A crossover theory for equations of state is also discussed.
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3.1 Equationsof Statefor High Pressure Equilibria and Critical
Phenomena

3.1.1 Cubic Equations of State

Cubic equations of state are equations, which when expanded have volume terms raised to
the first, second, and third power. Most commonly encountered phase equilibrium
calculations, such as vapour-liquid equilibria, involve only two phases for which a cubic
equation is suitable. Cubic equations have the advantage that the three values of volume can

be obtained analytically without the need for an iterative solution procedure.

The van der Waals equation of state (1873) is the simplest cubic equation of state for fluid
phase equilibria. It can be regarded as a “hard sphere term + attractive term” equation of
state composed from the contribution of repulsive and attractive intermolecular interactions
(Sadus, 1994). The van der Waals equation was the first equation capable of representing
vapour-liquid coexistence. The pressure ) is related to the temperature (T), ided gas

constant (R) and molar volume (V) via

R a
= -2 3.1
e vIrlvE: (3.1

It has two pure component parameters a and b. The parameter a is a measure of the attractive

forces between the molecules, and b is related to the size of the molecules. Since the van der
Waals equation of state is cubic in volume, three volumes exist for any given temperature
and pressure. Usudly, p., Tc and V; are known and Eq. 2.1 (Chapter 2) may be

simultaneously solved to provide solutions for the parameters aand b:
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27TR?T?
a=

3.2
64D, (3.2)

RT,
b=—¢ 33
8n. (3.3)

Van Konynenburg and Scott (1980) successfully demonstrated that most of the critica
equilibria exhibited by binary mixtures could be qualitatively predicted by the van der Waals
equation of state, but it is rarely sufficiently accurate for critical properties and phase
equilibria calculations. For example, the critical compressibility factor of al fluids including
pure component and binary mixtures predicted by van der Waals equation is 0.375 (Eq. 3.2
and Eq. 3.2 are used in Eq. 2.1 a the critical point), whereas the real value for different
hydrocarbons varies from 0.24 to 0.29. Many modifications at the van der Waals equation of
state have been proposed to address this deficiency. Five examples of cubic equations of

state based on the van der Waals equation are listed in Table 3.1.
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Table 3.1 Examples of Improved Cubic Equations of State

Reference Equations of state Eq.
Redlich-Kwong (1949) RT a
p= - — (34)
V-b V(V+bT
Soave-Redlich-Kwong (1972) _ RT a(T) (35)
PV b V(V +b) '
Peng-Robinson (1976) _ RT a(T) (3.6)
PV b VV+b) +bV-Db) '
Stryjek-V era-Peng-Robinson _RT a@,T) (37)
(1986) =V V(V +b)+b(V - b) '
. __RT a(T)
Patel- Teja (1982) P=yT5 v VD)oV - D) (38)

Eq. (3.4) was proposed as an empirical modification of the van der Waals equation to make

the attractive term temperature-dependent. The parameters a and b are usually expressed as

25
a= 042787 e (3.9)
Pc
b=0.0867"0 (3.10)
Pe

Spear et a. (1969) demonstrated that the Redlich-Kwong equation of state could be used to
reliably calculate the vapour-liquid critical properties of binary mixtures. Chueh and
Prausnitz (1967a, b) also showed that the Redlich-Kwong equation can be adapted to predict

both vapour and liquid properties. Deiters and Schneider (1976) and Baker and Luks (1980)
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have successfully applied the Redlich Kwong equation to the high pressure phase equilibria
of binary mixtures. Deiters and Pegg (1989) used the Redlich-Kwong eguation with
quadratic mixing rules to calculate phase diagrams for binary fluid mixtures and to classify
them according to the doba phase diagram. Polishuk et al. (1999) predicted the closed loop

critical behaviour between type 111 and V with the Redlich Kwong equation of state.

Soave (1972) suggested to replace the term T% with a more general temperature-dependent

term a(T) (Eqg. (3.5) inthe Table 3.1), where

2T 2
a() = 0.4274(R T Y1+ m1- (TL)O-E’]}2 (3.11)
P, c
m =0.480+1.5A - 0.176wn2 (3.12)
b= 0.08664ﬂ (3.13)
P.

and w is the acentric factor. Soave (1972) calculated the vapour pressures of a number of
hydrocarbons and severa binary systems with the Soave-Redlich-Kwong equation, and
compared the results of the calculations with experimental data. In contrast to the origina
Redlich-Kwong equation, Soave’ s modification fitted the experimental (vapour-liquid) curve
well and it was able to predict the phase behaviour of mixtures in the critical region. Elliott

and Daubert (1987) improved the accuracy of the calculated critical properties of 95 binary
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systems containing hydrocarbons. Zheng et al. (1999) also used the Soave-Redlich-Kwong
equation to calculate the phase equilibria of systems containing methane, carbon dioxide and

nitrogen, and compared the results of calculation with experimenta data.

Peng and Robinson (1976) redefined a(T) as

272
a(T) = 045724 R1e 11 4 1. (Tl)°-5]}2 (3.14)
k =0.37464 +1.5422w - 0.26922w? (3.15)
b=007780"1¢ (3.16)
Pc

The Peng and Robinson equation of state was proposed as Eq. (3.6), it dightly improves the
prediction of liquid volumes and predicts a critical compressibility factor of Z, = 0.307 (the
critical compressibility factor of the RedlichKwong equation is 0.333, and that van der
Waals is 0.375). Peng and Robinson (1977) gave examples of the use of the Peng Robinson
equation for predicting the vapour pressure and volumetric behaviour of pure component and
binary mixtures. In general, Eq. (3.6) performed as well as or better than Eq. (3.5). Han et 4.
(1988) reported that the Peng-Robinson equation of state was superior for predicting vapour -
liquid equilibrium in hydrogen and nitrogen containing mixtures. Harstad et al. (1997)
showed that the Peng-Robinson equation of state could be used to obtain a relatively

accurate, noniterative and computationally efficient correlation of highpressure fluid
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mixtures used in gas turbines and rocket engines. Zhao and Olesik (1999) used the Peng-
Robinson equation of state to calculate methanol and CHF; binary mixtures. The results
showed that the Reng-Robinson equation of state with two temperature-independent binary
parameters was capable of representing the experimental data over the entire temperature

range with an average relative deviation within 6%.

Stryjek and Vera (1986) proposed the following modified temperature functionality for the

Peng-Robinson equation of state to extend the range of applicability to polar components:

2
a(T) = 0457248 1< i+ k [+ (Tl)°-51(0.7 i Tl)} (3.17)
k = 0378893+ 1.4897153 - 0.17131848v° +0.0196554n° (3.18)
RT
b=0.0778 < (3.19)

Pe

where k, is an adjustable parameter characteristic of each pure component. The Stryjek
Vera-Peng-Robinson equation of state (Stryjek and Vera, 1986) was proposed as Eq. (3.7).
In addition, it must be noticed that optimizaion of k; values was performed using a

particular set of critical constants (Stryjek and Vera, 1986). The correct application of

Stryjek-V era-Peng Robinson equation of state requires usage of this set.
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The Peng-Robinson and Soave-Redlick-Kwong equations are widely used in industry
(Sadus, 1994). The advantages of these equations are they are easy to use and that they often
accurately represent the relation between temperature, pressure, and phase compositions in
binary and multicomponent systems. These equations only require the critical properties and
acentric factor for the generalized parameters. Little computer resources are required and
those lead to good phase equilibrium correlation. However, the success of these
modifications is restricted to the estimation of phase equilibria pressure. The calculated
saturated liquid volumes are not improved and they are invariably higher than the measured

data.

Patel and Teja (1982) proposed a third constant ¢ into the van der Waals equation’ s attraction
term, resulting in Eq. (3.8). The equation of state alows for adjustment of the critica
compressibility factor Z instead of predicting a fixed value. This added flexibility improves
saturation property predictions for polar fluids while maintaining a simple form that doesn’t

require alarge amount of pure component or mixture experimental data for accuracy.

As with the van der Waals equation of state, the parameters a and b in the Patel-Tegja
equation are evaluated using the conditions at the critical point given by Eqg. (2.1). The

condition for the third parameter c is:

cTc (3.20)
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Instead of having a fixed value of the critica compressibility factor fixed by parameters a
and b, the value is the arbitrary, substance specific, empirical parameter h_.. h_ is
determined by minimizing the errors between experimental saturated liquid volume and
those calculated by the equation of state. Patel and Teja (1982) calculated h, for 38

substances. They also correlated h, to the acentric factor w, for non-polar substances

yielding the following equation.

h, = 0.329032 - 0.076799w + 0.0211947 w* (3.22)

Satisfying the conditions of Eq. (2.1) and Eq. (3.20) yields the following equations for the

parameters a, b, and c:

20T 2
am)=w, e a (1) (3.22)
b=w, Sl (3.23)
PC
c=W, alF (3.24)
Pe
where,
W, =1- &, (3.25)

60



W, =22 +3(1- 2h )W, + W +1- &, (3.26)
and W, isthe smallest positive root of the following cubic equation:
WE +(2- & )We +32W, - hZ =0 (3.27)

In the Eq. (3.22), theterm a(T)is given by:
T 05
a(T)={1+[1- (T—) IF} (3.28)

F is a substance specific empirical parameter also determined by minimizing errors between
experimental saturated vapour pressures and those calculated by the equation of state. Patel
and Tega (1982) calculated F for the same 38 substances and also correlated it to the acentric
factor for non-polar substances:

F =0.452413 +1.30982w - 0.295937 w? (3.29)

Smith (1995) gave an expression for the compressibility factor Z,

Z®+(C- 122 +(-2BC - B?- B- C+A)Z+(B’C+BC- AB)=0 (3.30)
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where

ap
= 3.31
(RT)? (331)
_bp
=T (3.32)
_cp
C= > (3.33)

Eq, (3.30) will yield one to three positive real roots depending upon the number of phasesin
the system. If a vapour and liquid phase are present, the smallest root represents the liquid's

compressibility while the largest root is that of the vapour.

Palenchar et a. (1986) have reported a rare, direct comparison of the quality of prediction of
the critical locus using different cubic equations of state. In addition to the Redlich-Kwong,
Peng-Robinson and Soave-Redlich-Kwong equations, calculations for equations of state
proposed by Teja and Patel (1982) and Adachi et a. (1983) were reported for the carbon
dioxide + methane, butane, decane or water; methane + hexane or heptane; and propane +
hexane and water + benzene binary mixtures. They concluded that the critical temperatures
and pressures of type | systems could be adequately predicted athough there was a
substantial discrepancy between theory and experiment for the critical volume. The Peng-
Robinson and Soave-Redlich-Kwong equations yielded a more accurate representation of

mixtures exhibiting a discontinuity in critical equilibria than the Patel and Teja equation.
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Polishuk et a. (1999) compared the critical lines predicted by RedlichKwong, Peng-
Robinson, Soave-Redlich-Kwong, Stryjek-Vera-Peng-Robinson, Patel-Tega and Trebble-
Bishnoi (1987) equations of state using dassical mixing rules with the experimental data
available for the mixtures of methane + alkanes up to and including octane. The results show
that different cubic equation of state can yield similar semi-quantitative and even quantitative

predictions with the optimised values.

3.1.2 Noncubic Equations of State

The development of cubic equations of state has been focused on obtaining an improved
empirical representation of attractive interactions. Improvements to cubic equations
emphasize obtaining better agreement with experiment at low temperatures and pressures for
phase equilibria. At high pressures and temperatures, repulsive interactions can be expected
to be the dominant influence determining the properties of the fluid. There are many accurate
representations which have been developed for the repulsive interactions of hard spheres and
which were incorporated into equation of state. In general, the effect of using an accurate

model of repulsion is to generate a noncubic equation of state.

Normally, noncubic equations of state are of two broad types. One type is obtained by
simply modifying the repulsive term of the van der Waals equation (hard sphere term).
Another type is obtained by modifying both attractive and repulsive terms or combining an

accurate hard sphere model with an empirical temperature dependent attractive contribution.
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Many improvements to the simple van der Waals hard sphere repulsive term have been

reported (Mulero et a., 2001). Some important hard sphere expressions are summarised in

Table 3.2. A comprehensive review of hard sphere terms is given by Mulero et al. (2001).

Table 3.2 Summary of hard sphere expressions of modification of repulsive term of van der
Waals equation. Where 'y = b/(4V) is a temperature independent packing fraction of spherical

molecules.

Reference Hard sphere expression Eq.

Reiss-Frisch-Lebowitz (1959) 14 y+y? (3.34)

-y’
Thiele (1963) 142y + 3y (3.35)
(- y)*

Guggenheim (1965) 1 (3.36)
a-y*

Carnahan-Starliing (1969) 1+y+y?-y° (3.37)

(- y)°

Scott (1971) V +b (3.38)
V-b

Boublik (1981) 1+ (3 - 2)y+(32- 3 +1)y?- a2y’ (3.39)

(1-y)’
Kolafa and Nezbeda (1994) Lay+y?- é(y?’ £y (3.40)
-y’
Malijevsky-Veverka (1999) 1+1.056y + 1.6539y? + 0.3262y° (3.41)

(1- y)*(1+0.056y +0.5979y” +0.3076y°)

The Guggenheim equation of state (1965) is a more accurate hard sphere model which has

been extensively used for the calculation of critical equilibra:
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RT a

v (3.42)

p

Both a and b can be obtained by using critica properties (a=0.493R*T?/ p,,
b=0.18727 RT,/p.), and a critica  point, the compressibility  factor
Z,. = p V. /(RT,)=0.3611. The Guggenheim equation has been used to predict the critical

properties of a diverse range of binary mixtures (Hicks and Young, 1976; Hurle et a.,
1977ab; Hicks et al. 1977, 1978; Toczylkin and Young, 1977, 1980a, b, c; Waterson and
Young, 1978; Semmens et al., 1980; Sadus and Y oung, 1985a, b; Sadus, 1992a, 1994; and
Wang et a. 2000). Despite the diversity of the systems studied, good results were
consistently reported for the vapour-liquid critical locus. The critica liquid-liquid line of
type Il binary mixtures was also represented adequately. In contrast, calculations involving
type 111 equilibria are typically only semi-quantitative (Christou et al., 1986) because of the
added difficulty of predicting the transition between vapour-liquid and liquid-liquid

behaviour.

Carnahan and Starling (1969) obtained an accurate representation of hard sphere interactions.
The Carnahan-Starling-van der Waals (CSvdW) equation is formed by coupling this hard

sphere term with the van der Waals attractive term (Carnahan and Starling, 1972):
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_RT@A+y+y*-y’) a
= YRRV gz (3.43)

The covolume (b =0.18727 RT / p.) and attractive (a = 0.4963R*T?/ p,) equation of state

parameters are related to the critical properties, and critical compressibility factor

Z, =0.358% .

Sadus (1993) has demonstrated the CSvdW equation of state can be used to predict type 111
equilibria of nonpolar mixtures with considerable accuracy. Y elash and Kraska (1998) found
severa types of closed loop liquid-liquid immiscibility behaviour in binary mixtures based

on CSvdW equation of state.

Boublik (1981) has generalised the Carnahan Starling hard sphere potentia for molecules of
arbitrary geometry via the introduction of a nonsphericity parameter (a). Svejda and Kohler
(1983) employed the Boublik expression in conjunction with Kihara's (1963) concept of a

hard convex body (HCB) to obtain a generalised van der Waals equation of state:

_RI[1+(&-2)y+(RA°-3&A+Yy*-a’y’] a
P V(- y)? v

(3.44)
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In Eqg. (3.44), a is the deviation from spherical geometry which isobtained by considering

the mean radius R, surface area’S and volume V' of a convex body:

a=—> (3.45)

In the limiting case of a hard sphere, a =1, and Eg. (3.44) becomes identical to the

Carnahan-Sarling equation Eq. (3.43).

Eq. (3.44) has been used for the calculation of the vapour-liquid critical properties of binary
mixtures containing nonspherical molecules (Sadus et al., 1988; Christou et a. 1991). The

results obtained were dightly better than could be obtained from similar calculations using

the Guggenheim equation of state. Sadus (1993) proposed an alternative procedure for
obtaining the equation of state parameters. Eq. (3.44) in conjunction with this modified
procedure can be used to predict type Il critical equilibria of nonpolar binary mixtures with

a good degree of accuracy.

There are many other nonspherical or hard chain equations of state which have not been used
for the calculation of critical equilibria. Vimalchand and Donohue (1989) have reviewed

severa hard chain equations of state. Van Pelt et a. (1992) have applied a simplified version
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of the perturbed hard chain theory (SPHCT) equation of state proposed by Beret and

Prausnitz (1975) to binary critical equilibria.

The SPHCT equation of state has the following form:

- ,
p=(1+c)ﬂ§3h- h o RlavY (3.46)
\ (1-h)’g Vo+v YWV

where Y =exp(e q/2ckT)- 1 and h =0.7405v" /V, where V' is the molecular volume
parameter, e is the intermolecular potential energy per unit area; ¢ is 1/3 of the total number
of externa degrees of freedom of a molecule; q is the number of segments per molecule and
z is the close-packed coordination number. In common with other equations of state, good
results were obtained for the aitical pressures and temperatures of many binary mixtures.
The calculations cannot be expected to yield accurate critical volumes for binary mixtures
because the critica volume of the components was used as an adjustable parameter to
optimise the agreement of theory and experiment for the critical pressures and temperatures
of the pure components. Eq. (3.46) was successfully used (van Pet et al., 1995) to
qualitatively reproduce a variety of binary mixture phenomena including type VI behaviour.
Recently, development of shape factor model equations of state were reported by Huber and

Ely (1994), and Estela-Uribe and Truder (1998).
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Christoforakos and Franck (1986) and Heilig and Franck (1989) have developed equations
specifically for high pressure equilibria which aso incorporate the Carnahan-Starling hard

sphere term. The Christoforakos-Franck equation of state introduces a temperature

dependent covolumeterm 4b = (T, /T)® into the repulsive term:

RT1+b/V+b?/VZ- b®/V® 4RTb(1®- D(exp(e/KT)- 1)
Vv

(1- b /V)? v? (347)

The attractive term was obtained by examining the virial coefficient of gases in terms of a
square-well potential. The e parameter reflects the depth of the potential, whereas | isthe
relative width of the well. The eguation has been successfully applied to the high pressure
phase behaviour of some binary agueous mixtures (Christoforakos and Franck, 1986; Franck,
1987). In particular, the type 111 critical locus of binary mixtures of H,O + Ar, Xe, N, CHy

or carbon dioxide is predicted accurately.

The Heilig-Franck (1989) equation of state uses the same form of repulsive term of EQ.
(3.47), but it has a different attractive term which is obtained by applying the Padé

approximation of the virial coefficients of a square-well fluid:

_RT@+b/V+b?/V2-b®/V')  RIB
V(L- b /V)? V(V +C/B)

(3.48)
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where Band C are the second and third virial coefficients of a square-well fluid respectively.
Accurate calculations of the critical properties of binary mixtures have been reported (Heilig
and Frarck, 1989, 1990). Mather et al. (1993) have demonstrated that Heilig-Franck equation

of state can accurately predict type |11 critical loci of H,O + Neand H,O + Kr mixtures.

Deiters (1981a, b) has adopted a semiempirical approach to construct an equation with three

adjustable parameters a, b and c.

2

p= {1+ 4n - 20 /(L- h)*} - al[ep(L/T,)- ﬂ% (3.49)

wherer =b/V,h =0.7404r ,c, =0.6887,1 =-0.06911candT, =(cT/a+lr )/y.

Parameter | is a hard sphere constant, and the values of y range from 1 for a dilute gas and
between 0.34 and 0.46 for dense fluids. In Eq. (3.49), the Carnahan Starling expression for
hard spheres has been adjusted to accurately fit the experimental vapour pressure data for Ar
via parameter cp, and deviations from spherical geometry are reflected in values of ¢ > 1. The

equation can be used to accurately predict the vapour-liquid properties of binary mixtures

(Deiters, 1982; Deiters and Swaid, 1984; Calado et a., 1981). Calculations of the vapour-
liquid critical locus of binary mixtures (Mainwaring et al., 1988a, b) indicate that good

results can only be obtained for mixtures of molecules of similar size. The equation has not
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been extensively tested for noncontinuous critical equilibria, but type 111 critical properties of

H>O + benzene and H,O + He can be adequately predicted (Mainwaring et al., 1988a).

3.1.3 Thermodynamic Perturbation Theory Equations of State

The hard chain equations of state are potentially important for devel oping accurate equations
of state for macromolecules. Historically, attention has been focused on using accurate hard
sphere models to represent the repulsive interactions of geometrically simple molecules.
Progress has been achieved in depicting the properties of hard nonspherical bodies (Sadus,

1995).

Boublik (1981) used Kihara's (1963) concept of a hard convex body (HCB) as the basis of
an equation of state for nonspherical hard bodies. Flory’s concept of excluded volume has
been incorporated (Dickman and Hall, 1986) in a reasonably accurate hard chain equation of
state. Chiew (1990) developed a rigorous theory for representing hard chains, and Song et al.
(1994) formulated the theory into a useful equation of state for polymers. Wertheim (1987)
proposed a thermodynamic perturbation theory (TPT) which accommodates hardchain
molecules. Chapman et a. (1988) generalised Wertheim’'s TPT model to obtain the equation
of state for the compressibility factor of a hard chain of m segments. The form of the

compressibility factor is
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fln gys(s )9 (3.50)

ZchnzHS_(m_l)g_'_y z
Ty o

where g,5(s) is the hard sphere site-site correlation function at contact, s is the hard

sphere diameter, y=p mrs ®/6 isthe packing fraction, and r is the number density. The
compressibility factor of hard sphere can be accurately determined from the Carnahan

Starling equation. For the Carnahan Starling equation, the site-site correlation function is

ﬂ (351)

Ous(S) = 2(1- )

Ghonasgi and Chapman (1994) modified TPT for the hard sphere chain by incorporating
structural information for the diatomic fluid. The compressibility factor of a hard chain can

be determined from the hard sphere compressibility factor and the site-site correlation

function at contact of both hard spheres (9,5) and hard dimers ( g,p)

HS _ m ﬂln gHS(S)O ﬂln gHD(S)O
=nmZ 3.52
28" ER AR T s

Chiew (1991) obtained the site-site correlation result for hard dimers:
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1+2y

9uo(S) :w

(3.53)

Chang and Sandler (1994) proposed TPT-D1 and TPT-D2. The form of TPT-D1 can be

expressed as
ZM = m g+ y+y’ -y(_) meg . yo-2y) y(5- 2y) © )gf[ _2y(2+y) O
@y 5 28 @ N2 Vg - y(A+2y) 5
(3.54)
TPT-D2 can be represented as
e H e
y @ Y Y) o (355)

(__ 1) y(3498 - 0.24y- 0.414y?) 0
? - y)(2- y)(0534 +O.414y)g

Starting from the points of Ghonasgi and Chapman (1994) and Chang and Sandler (1994)

above, Sadus (1995) proposed that, in generd,

Jup = Jus@y *+¢) (3.56)
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where a and c¢ are the constants for a straight line and the values can be obtained by fitting

the molecular smulation datafor 9,5 and g, and obtained a new equation of state, called
the simplified thermodynamic perturbed theory-dimer (STPT-D) equation of state. The

general form of the STPT-D equation of state for pure hard sphere chainsis

m fing.s . a(2- my
Z"=1+m(Z"S- D) +(1- + (357)
2" -+ My S S

Sadus (1995) applied the STPT-D equation to the prediction of both the compressibility
factors of 4, 8, 16-, 51- and 201-mer hard chains and the second viria coefficients of up to
128 mer chains. Comparison with molecular smulation data indicated that the STPT-D
equation generally predicts both the compressibility factors and the second virial coefficient

more accurately than other equations of state (Chiew equation, GF-D, TPT-D1, TPT-D2).

By using some elements of the one fluid theory, Sadus (1996) extended the STPT-D
equation to hard sphere chain mixtures with no additional equation of State parameters
required. The compressibility factor predicted by the STPT-D equation of state was
compared with molecular simulation data for severa hard sphere chain mixtures containing

components with either identical or dissimilar hard sphere segments. Good agreement with
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simulation data was obtained when the ratio of hardsphere segment diameters for the

component chains is less than 2.

Recently, Sadus (1999a) proposed an empirical simplified thermodynamic perturbed theory-
dimer (ESTPT-D) equation of state, which is a smplification of STPT-D equation. In the
equation of state an empirical relationship (Shah et al., 1994) for Z*° is used,

ZHS — 1+ (k, +k)y

3.58
1- k) (359

where k, =1.2864 and k, = 2.8225 are empirically evaluated constants (Shah et al., 1994).

The addition of EqQ. (3.58) dimer properties into Eq. (3.57), the resulting ESTPT equation

(Sadus, 1999a) is

7ZM =1+ Eqko +k1)y' kozy2 g+(1_ m)%ZkOy _ kOZy 24_ aY(Z' m)
ng 2 2
- koy) o 1- koy ko+k1' koyﬂ 2ay+c

(3.59)

Sadus (1999b) extended the hard sphere chain equation to hard convex body chain equation
of state (HCBC). The compressibility factor of a hard-convexchain of m segments is

obtained as
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Zicsec = M yycp - (M- DE?H ng (3.60)
iy @

where g,.:(s) isthe hard convex body site-site correlation function at contact, the symbol

S in Eqg. (3.60) represents the breadth of the HCB. The compressibility factor of a hard
convex body can be accurately determined from the HCB equation. For the HCB equation,

the site-site correlation function is

A

-yl2 ,0
1+S, ﬁ 12 (3.61)

Ohce

oED

where S, istheratio of the actual surface area of the HCB S,,; to the surface area of hard

spheres S, ;(equiv) occupying adiameter equivalent to the HCB diameter:

— SHCB
T S leaiv) (562

Sadus (1999b) discussed the details on how to obtain S;, and gave the general form of

packing fraction for pure component,
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_ml+(G-2y+(E*-3A+Dy’-a’y’
ZHCBC_ (1_ y)3

3.63
25S.y- S.¥° o) (369

- (m- 1)§[+ 2
(1- y)@- (3- 255)y+(B-3SR)y" - 1- SK)Y' 5

Sadus (1999b) examined the effect of molecular shape on the compressibility factor and the
second viria coefficient for chain molecule consisting of spheres, prolate spherocylinders,
oblate spherocylinders and doublecones, and found that these properties are very sensitive to

segment shape.

3.2 Mixing rules

Most models of the fluid state such as conformal solution theory, perturbation models and
equations of state are initially developed for pure substances. Therefore, directly extending
an existing pure fluid model to multicomponent equilibria is an important task (Sadus,
1992a). This is most commonly achieved by mixing rules and combining rules which relate
the properties of the pure components to the properties of the mixtures. The discussion will
be limited to the extension of parameters a and b. These two parameters have a real physical

significance and are common to many realistic equations of state.

The simplest possible mixing rule is alinear average of the equation of state parameters:
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a=axa (3.64)

b=8 xb (3.65)

Eq. (3.64) is sometimes employed (Han et al., 1988) because of its simplicity, but Eq. (3.64)
is rarely used because it does not account for the important role of unlike interactionsin
binary fluids. Consequently, employing both Eqg. (3.64) and Eq. (3.65) would lead to the poor

agreement of theory with experiment.

The van der Waals onefluid prescriptions are the most widely used mixing rules:

a=Q a xxa, (3.66)
]

b=4 & xx/b (3.67)
i

where ag; and b; are the equation of state parameters for pure components and cross

parameters a; and b;; (i ? j) are determined by an appropriate combining rule.
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Eq. (3.66) and Eq. (3.67) are based on the implicit assumption that the radial distribution
function of the component molecules is identical, and they both explicitly contain a
contribution from interactions between dissimilar molecules. A comparison ( Harismiadis et
al., 1991) with computer simulation has concluded that the van der Waals mixing rules are
reliable for mixtures exhibiting up to an eight-fold difference in the size of the component
molecules. The performance of the van der Waals mixing rules has aso been thoroughly
tested for several eguations of state by Han et al. (1988). They used the van der Waals
mixing rule to obtain parameter a and a linear mixing rule to obtain parameter b. The results
showed that most of equations of state with the van der Waals mixing rules were capable of
representing vapour-liquid equilibria with only one binary adjustable parameter for obtaining
a;. Eq. (3.65) and Eq. (3.66) were adequate for mixtures of nonpolar and slightly polar
compounds (Peng and Robinson, 1976; Han et al., 1988). Voros and Tassios (1993)
compared six mixing rules (the one- and two parameters van der Waals mixing rules; the
pressure- and density-dependent mixing rules; two mixing rules based on excess Gibbs
energy models: MHV2 and Wong-Sandler) and concluded that the van der Waals mixing
rules give the best results for nonpolar systems. For the systems which contained strongly
polar substances such as acohol, water and acetone, the van der Waas mixing rule did not
yield reasonable vapour-liquid equilibrium results. Anderko (1990) gave some examples of
the failure of the van der Waals mixing rules for strongly nonideal mixtures. There is some
evidence (Deiters, 1987) that the following mixing rules are more approprate at high

pressure:
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axxes,”* (3.68)
P

Sy = é_ é. X X;S ijg (3.69)
i

where a and b are proportional to €3 and S, respectively. e, and s, are the
characteristic attractive energy and collision diameter. The parameter g is obtained from

comparison with experimenta data, and is typically assigned a value of either 2 or 2.4. Some

attempts have been made to estimate it from theoretical considerations. In terms of the

conformal parameters (recall h;; = gﬁ) the above relationships can be represented as.

fg° =3 axxf,g, (3.70)
i

g° = é_. é Xingijg (3.71)
i

Sadus (1989) used conformal solution theory to derive an aternative to the conventiona
procedure for obtaining parameter a of equation of state. Instead of proposing an average of

pure component parameter data, the parameter a for the mixture is calculated directly.
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Consequently, a is a function of composition only via the conformal parameters and the
contribution from the combinatorial entropy of mixing. The parameter a is obtained by

taking the positive root of the following quadratic equation:

a’qe[-2f /1 f+(f /f)*-2h' /h-2f'h [/ fh+(h /h)?)]
+aRTV[f .q%(-h"/h- 7/ f)]+2f ,q3(h"/h+ f'h'/ fh- (h'/h)?)
+X°[-h" /h+(h'/h)? +1{x@A- X)}]- (RTV)?[f 2{(f'/ f)?- (h' /h)*}} (3.72)

+f q2{h"/h- (W /h)? - 1[x(- X)]} - f ,f h"/(hg)] =0

where superscripts  and ~ denote successive differentiation of the conformal parameters,
and g and f are characteristic of the equation of state. The main advantage of Eq. (3.72) is
that the parameter a can be calculated directly from the critical properties of pure
components without using combining rules for the contribution of unlike interactions. Sadus
(19923, b) has applied the above equation to the calculation of the vapour-liquid critical
properties of a wide range of binary mixtures. The agreement was generaly very good in
view of the fact that no adjustable parameters were used to arbitrarily optimise the agreement

between theory and experiment.

Huron and Vidal (1979) have developed mixing rules from the excess thermodynamic
properties of mixing. For example, in the case of the van der Waals equation and assuming a
simple model of the energy of the fluid, the following relationship (Mollerup, 1986) is

obtained:
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a=Va x(a/b)y, - GV +RTVIA x In{b (¥ - D/(y- Db}] (3.73)

wherey =V /b, y =V /b and G is the excess Gibbs function. The above approach is

mainly limited to low pressure equilibria but it may be useful for predicting critical solution
temperature phenomena. Another approach, which is discussed elsewhere (Hoheisel and

Kohler, 1984), is the concept of local composition.

Many of the above density dependent prescriptions are undoubtedly more accurate than the
van der Waals model at high densities. But for high pressure phenomena, there is insufficient
data to make an assessment. Some computer smulation of the high pressure behaviour of
binary fluids would be useful in this instance. It is clear that the increased complexity is a
disadvantage for high pressure calculations, particularly if reliable theoretica estimates of
parameters such as g and g (Eg. 3.71) cannot be obtained and empirical, methods must be
adopted High pressure phenomena also occur over a range of densities. The van der Waals
prescriptions are certainly appropriate for vapour-liquid phenomena but other rules may be
beneficial for dense liquid-liquid critical phenomena. The analysis of type Il phe nomena,
where there is a transition between vapour -liquid and liquid like densities, could also benefit.
However it is difficult to isolate the effect of mixing rules on the phase behaviour of fluids
because most equation of state calculations rely on additional combining rule parameters for

their accuracy. It appears unlikely that any of the above prescription could eliminate this
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feature. Thus, the overall effect may be to increase the complexity of the calculations without

necessarily improving the accuracy and genuine predictive capability.

A different approach has been adopted by Boublik (1970) and Mansoori et al. (1971). They

proposed a direct extension of the Carnahan-Starling hard sphere term,

Z=[1+{(3DE/F - 2}y +{(3E®/F?)- (3DE/F)+Ly?- (E’*/F?)y’l/a- y)® (3.74)

where

y=p N,F/6V (3.75)
F=3 xS 3 (3.76)
E= é XS i2 (3.77)
and

D= é XS | (3.78)
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At low densities, the compressibility factor predicted by Eqg. (3.71) is identical to the
Carnahan-Starling equation with the onefluid model. However, at moderate and high
densities, there is a significant deviation, particularly if molecules of dissmilar size are
involved. Therefore, the analysis of vapour-liquid properties is unlikely to be affected, but in
common with other density dependent mixing rules, it may be beneficial for some dense
fluid critical phenomena. Dimitrelis and Prausnitz (1986) have concluded that the equation is

particularly advantageous for the prediction of vapour -liquid equilibria if the molecular size

retio (s, /s ,)° exceeds 2.

The temperature dependence of the equation of state parameters is typicaly obtained by
scaling the values obtained at the vapour-liquid critica point to lower temperatures and
pressures. The critical values are adequate for high pressure equilibria. The exception is
liquid-liquid phenomena for which the vapour-liquid vaues are intuitively inadequate. The

following equation (Christoforakos and Franck, 1986) is acceptable:

b(T,) = b(T,)(T,/T,)* (3.79)

It should be noted that the temperature dependence of the parameter a is normally reflected
in alower than normal ? value (see Eq. 3.84) and that the agreement with experiment is often

very good without formally introducing any temperature dependence in the b term.
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Wong and Sandler (1992) used the Helmholtz function to develop mixing rules to satisfy the

second viria condition. For the mixture parameters of an equation of state, a and b are

R A LA

=b SR RLE. .

a (ailxbi+C) (3.80)
é_ é Xin (b' %)ij

b=- ]Af . (3.81)
TR A% gRr

where C is a constant dependent on the equation of state selected and A is the excess

Helmholtz function at infinite pressure, and

(1' kij)

) (CRE=DRICReD) (382)

where k;; is abinary interaction parameter.

Wong and Sandler (1992) tested the Eqg. (3.80) and Eqg. (3.81), and reported that they were

accurate in describing both simple and complex phase behaviour of binary systems for
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diverse systems. Wong et a. (1992) demonstrated that the Wong-Sandler mixing rules can
be used for highly nonideal mixtures. Huang and Sandler (1993) compared the Wong
Sandler mixing rules for nine binary systems. They demonstrated that the mixing rules can
be used to make high pressure vapour-liquid equilibrium predictions from low pressure data.
Orbey and Sandler (1994) used the Wong-Sandler mixing rule to correlate the vapour-liquid
equilibria of various polymer + solvent and solvent + long chain hydrocarbon mixtures. They
concluded that the Wong-Sandler mixing rule can correlate the solvent partial pressure in
concentrated polymer solutions with high accuracy over a range of temperatures and

pressures with temperature-independent parameters.

To go smoothly from activity coefficientlike behaviour to the van der Waals one fluid
mixing rule, Orbey and Sandler (1995) dlightly reformulated the Wong-Sandler mixing rules

by rewriting the cross second virial term given in Eq. (3.82) as

b +b, aa Fg- Kij) (3.83)

a —_—
(b' E)ij - 2

Orbey and Sandler (1995) tested five binary systems, and showed that this new mixing rule

was capable of both correlating and predicting the vapour-liquid equilibrium of various
complex binary mixtures accurately over wide ranges of temperature and pressure. Castier
and Sandler (19974, b) performed critical point calculations in binary systems utilizing cubic

equations of state combined with the Wong-Sandler mixing rules, and investigated the
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influence of the mixing rules on the shape of the calculated critical phase diagrams. The
results showed that the combination can obtain many different types of critica phase
diagrams. Rudolph et al. (2000) used the Peng Robinson equation of state with the Wong-
Sandler mixing rule to investigate binary mixtures of water plus surfactant systems
containing G E;, GEs, G/Es and GEs. They found that the model fitted the experimentally
found type of phase behaviour quite correctly. Comparison and evaluation for various
mixing rules can be found in the works of Knudsen et al. (1996), Michelsen and Heidemann
(1996), Wang et a (1996), Orbey and Sandler (1996), Twu et a. (1998), Wei and Sadus

(1999Db) and Saghafi and Moshfeghian (2000).

3.3 Combining Rules

Any redlistic mixture prescriptions will invariably contain contributions from interactions

between unlike molecules. This means that the cross term &; and b; (it j) must be

evaluated. The most widely used combining rule for the a; term was first proposed by van

der Wadls:

Aj = X4/ &8 (3.84)

Alternatively, the following combining rule for critical calculations can be used,
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a3,
- =X.b. I 3.85
a1] Xu ij b|ibjj ( )

The x;; term (also commonly defined as tk;) is frequently introduced into combining rules

to optimise the agreement between theory and experiment. The X;; parameter is frequently
interpreted as reflecting the strength of intermolecular interaction. This interpretation is
supported by the fact that values of x;; obtained from the analysis of the critical properties of

many binary mixtures consistently decline with increasing size difference between the
component molecules. Mixtures of molecules of similar size, but different molecular
interactions, are associated with different interaction parameters. Nonetheless, the
requirement for 7 values to optimise agreement between theory and experiment is also
testimony to the inadequacy of the combining rule, mixture prescriptions and the equation of
state. It has been frequently documented (Mainwaring et al. 1988b; Elliot and Daubert, 1987)
that different ?; values are required to obtain optimal agreement between theory and

experiment for vapour-liquid and liquid-liquid critical equilibria, respectively.

The most widely used combining rules for b;; are the simple arithmetic rules:

b =z i Ui (3.86)
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and the Lorentz combining rule (Hicks and Y oung, 1975; Sadus, 19923, 1994):

~ (bili/3+bjl.j/3)3
by =2 (3.87)

Both the simple arithmetic and Lorentz combining rules yield nearly identical results for
mixtures of molecules of similar size, but the discrepancy increases substantially for
mixtures of molecules of very dissmilar size. The adjustable parameterz; is used to
optimise the agreement between theory and experiment. It is generally found that the
parameter z; is rot required for the accurate prediction of vapour-liquid critical properties
(Sadus, 1994). Similarly, good agreement between theory and experiment for type Il liquid-
liquid equilibria can usually be obtained by solely adjusting the x;; term and setting z;; = 1.
However, obtaining an optimal z;, parameter is essential for the accurate representation of
type Il behaviour. It is found (Sadus, 1993) that the arithmetic combining rule substantially
overestimates the two-phase region, whereas the Lorentz rule is more accurate but it extends
the one-phase region. Sadus (1993) has examined type Il behaviour of nonpolar mixtures
using both arithmetic and Lorentz combining rules. Good agreement between theory and

experiment could be obtained by determining both the optimal x;; and z; parameters.

Sadus (1993) proposed an aternative combining rule by taking a 2:1 geometric average of

the Lorentz and arithmetic rules without the parameter z ., that is,

ij 1
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b, ={1/ 4(2"")} (6} +b}*)? (b, +b;)" (389)

Sadus (1993) reported that the new combining rule (Eqg. 3.88) is generally more accurate that

either the simple arithmetic or Lorentz combining rules.

3.4 Crossover Equation of State

Chen et al. (1990) and Jin et a. (1993) introduced a theory that incorporates scaling laws
asymptoticaly close to the critical point and that are transformed into the regular classical
expansion far away from the critical point, and this lead to the crossover equations of state.
Although the original crossover equation of state gives an accurate representation of the
thermodynamic properties of fluids in a wide region around the critical point of pure

components, it cannot be extrapolated to low densities (Kiselev, 1998).

Fox (1983) proposed an approach to the incorporation of scaling laws in classical equations
of state. The idea of the approach consists in the renormalization of the temperature and the
density in the equations of state. The result is that the temperature and the density become
nontanalytic scaling functions of the dimensionless distance to the critical point. Kiselev
(1998) developed a cubic crossover equation of state based on the non-classical critical

phenomena for pure fluids which incorporates the scaling laws asymptotically close to the

90



critical point and which is transformed into the original cubic equation of state far away from

the critical point.

3.4.1 Classical Expression for the Critical part

In the critical region, the van der Waals equation of state corresponds to the mean-field, or
Landau theory of critical phenomena (Laudau and Lifshitz, 1980; Patashinskii and
Pokrovskii, 1979). The main assumption of the classical theory of critical phenomera is that
the critical part of the Helmhotz function, DA of the system can be represented by a Taylor

expansion in the powers of the order parameter (Kiselev, 1998)

DAt ,Dh)=3 § at 'Dh’ (3.89)
i

where t =T/T_ - 1 is the dimensionless deviation of the temperature T from the critical

temperature Tc, &; are the system-dependent coefficients, and Dh is an order parameter

(Landau and Lifshitz, 1980). In the critical region |t |<<1 and | Dh |<<1, therefore, there are

two main terms in Eq. (3.89)

DA ,Dh) =a,£Dh? +a,,Dh* (3.90)

that correspond to the critical phenomena (Landau and Lifshitz, 1980). Eq. (3.90) is valid
only in the temperature region Gi <<|t k<1 (Gi is the Ginzburg number, Landau and

Lifshitz, 1980) where the long-scale fluctuations in the order parameter are negligible
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(Laudau and Lifshitz, 1980; Patashinskii and Pokrovskii, 1979). If |t |<< Gi, the singular
part of the thermodynamic potential of a system becomes a non-analytical scaling function of

thet and Dh.

A theoretical approach for constructing a crossover expression for the thermodynamic

potential of a system in the critical region based on the renormalization-group calculations of
Nicoll and Bhattachafjee (1981) and Nicoll and Albright (1986) has been developed by Chen

et a. (1990). Using this approach, the critical fluctuations close to the critical point result is:

g-2b g-2b

DAt ,Dh) =a,tY 2®>Dh?Y ® +a,DhY > - K( ?) (3.92)

where, a,b and g are critical exponents, K ?)is the kernel term, which provides the

correct scaling behaviour of the isochoric specific heat asymptotically close to the critica

point (Kiselev, 1998),

Kt ?) :%azot 20y & - ) (3.92)

where, Yis a crossover function to be determined from the set of coupled algebraic equations

by Jin et a. (1993).

Eq. (3.91) is equivalent to Eq. (3.90) with the replacement of the dimensionless temperature

t and the order parameter Dh by the renormalized values (Kiselev, 1998):
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a g- 2b

t =tY 2, Dh =DhY (3.93)

and adding the kernel term K (t ?) . As one moves further from the critical point, |t | and

| Dh | increase, more terms in Eq. (3.89) and Eq. (3.90) may be considered.

3.4.2 Crossover Expression

It is well-known the Helmholtz energy per mole (Sandler, 1999) that can be described as

AT V) =- ¢ pdV + Ay (3.94)

where A,., corresponds to the temperature dependent function of the ideal-gas part of the

Helmholtz energy.

For aclassical equation of state p(V,T), can be written in the dimensionless form

c (3.95)

The dimensionless Helmholtz energy can be represented in the form
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AT V) =%= ; %ORJ Pav+ A‘F;;a' = DA(DT,DV) - DV Po(T) +Uo(T)

(3.96)

where DA(DT, DV) corresponds to the critical part of the Helmholtz function, DT =T, - 1

(T, =T/T,) is the dimensionless deviation of the temperature from the critical temperature
Te,and DV =V /V, - 1 is dso the dimensionless order parameter, bO(T) = p(V,, T)V,/RT

is the dimensionless pressure at the critical isochore V =V, and l]o is relation to employed

equation of state.

DT and CV are needed to renormalized in the critical part of the classical Helmholtz

function DA(DT, DV) according to Eq. (3.95) by Kiselev (1998). The critical temperature
and pressure of the equations of state can be taken from available measurements or
predictions, while the critical density is usualy found as fitting parameter of the model,
chosen to the best description of the vapour-liquid equilibrium surface far away from the
critical point. Since any classical equation of state does not reproduce the thermodynamic
surface of a fluid in the critical region, the critical density found by this method does not
coincide with the real critical density of the system (Kiselev, 1998). The additional terms to
take into account the difference between the classical critical temperature T; and critical

volume V., and the real critical parameters Trc and Vre were introduced in Eq. (3.94) by

Kisdlev (1998). The new forms of dimensionless temperature t and the order parameter

Dh
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N _a 2(2-a)

t =t Y & +@Q+t)Dt Y > (3.97)
_ g-2b 2-a

Dh =DhY ** +(1+Dh)Dh Y * (3.98)

where the order parameter Dh =V /V, - 1, while Dt . =DT_/T,. and Dh_ =DV, /V,, are

the dimensionless shifts of the critical temperature and the critical volume, respectively.
Parameters Trc and Vg are the real critical temperature and volume of fluid. The crossover

function Yin Egs. (3.97) and (3.98) can be written in the parametric form as

Y(g) = [%]ZQ (3.99)

and the parametric variable g can be found from the solution of the equation

1- 2b

: )2Y ° (q) (3.100)

Dh +dt +d.t 2
2" 41p? 1 2
TG m Gi®

b, =(g- 2b)/g(- 2b)=1.359 is the linear-model parameter (Kiselev and Sengers,
1993). Theterms pt and pt ? correspond to a projection of the rectilinear diameter of the

coexistence curve in the temperature-density variables r, =(r, +r )/2=r (1+dt) on

the temperature-volume projectionV, =1/r , @V, @1+ dt +d,t?).
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To complete the transformation of the classica Helmholtz function into the crossover form,

we must replace the classical dimensionless temperature DT and the volume DV in Eq.

(3.96) with the renormalized values t andDH , and the kernel term K (t *). The crossover

expression for the Helmholtz function is

A(T,V) = DA(t ,Dh) - DV p,(T) +uo(T) - K(t 2) (3.101)

3.4.3 Crossover Equation of State

A crossover equation of state incorporates the scaling laws asymptotically close to the
critical point and is transformed into the origina equation of state far away from the critical
point. The genera form of the crossover equation of state obtained from the crossover

expression in Eqg. (3.102):

e A9 - 2y U
p=RTe Yo (0N )+ o (3102)
g Vg™ " al
For the Patel-Tea crossover equation of state (Kiselev, 1998), the value of [50 is:
- 1 Tc Waa (T)
P(M)=—- =—>— (3.103)
b, T ZlDbb,

96



and the critical part CA isgiven by

DA(,Dh) = _peh .2, T Wea ({)| oh/b, +12 ph T, Wa ()bh

gbl T gDh/b3+1 b, T Znbb,

(3.104)

Q-

where W,, W,, and W, arefunctions of the critical compressibility factor Z, (Eq. (3.25)-

Eq. (3.27)), and W

W= WE +B6W, W, + W (3.105)

The definition of a (T) can be found in Eq. (3.28) and Eq. (3.29). Parameters by, b, and bz in

Eqg. (3.104) and Eg. (3.105) are

b,=1+—b——¢ — (3.106)

Remember that l:lo in Eq. (3.101) with Patel-Tega equation of state is
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Go(T)=- Inb, + e WAM Doy (3.107)
T b,

and

A= Aden

Aldeal RT (3108)

Kiselev (1998) used the modified Patel- Teja cubic equation of state (Patel and Teja, 1982) to
compare with experimental data for pure CO-, water, and refrigerants R32 and R125 in the
one- and two phase regions. He showed that the crossover Patel-Teja equation of state yields
a much better representation of the thermodynamic properties of pure fluids, especidly in the
critical region and for vapour-liquid equilibrium, than the original Patel-Tea equation of

stete.

Kisdlev and Ely (1999) also developed a crossover modification of the statistical associating
fluid theory equation of state for macromolecular chain fluids. The crossover statistical

associating fluid theory equation of state has the same form as the cubic one of Eq. (3.103),

but bO(T) and C A have the different forms because of different classical equation of state,

Y/

Po(T) = RT p(T,V.) (3.109)
and
DA ,Dh)= A (t,Dh)- A (t,0)- In(Dh+1)+Dh p,t) (3.110)

where Ar is the dimensionless residua part of the Helmholtz energy.
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Kiselev and Ely (1999) compared the crossover statistical associating fluid theory and
original equation of state with experimental single-phase data for n-triacontane and n-
tetracontane. The results show that the crossover statistical associating fluid theory equation
of state reproduces the saturated pressure data in the entire temperature range from the triple
point to the critical temperature with an average absolute deviation of about 3.8%, the
saturated liquid densities with an average absolute deviation of about 1.5%, the saturated
vapour densities with an average absolute deviation of about 3.4%, and gives a much better
representation of the experimental values of pressure and the liquid density in the critical

region.

Wyczalkowska et al. (1999) also developed a global crossover equation of state to show how

the density fluctuations affect al thermodynamic properties more and more significantly

when the fluid approaches the critical point.
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