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Chapter 3 Equations of State 
 
 
The simplest way to derive the Helmholtz function of a fluid is to directly integrate the 

equation of state with respect to volume (Sadus, 1992a, 1994). An equation of state can be 

applied to either vapour -liquid or supercrit ical phenomena without any conceptual 

difficulties. Therefore, in addition to liquid-liquid and vapour -liquid properties, it is also 

possible to determine transitions between these phenomena from the same inputs. All of the 

physical properties of the fluid except ideal gas are also simultaneously calculated. Many 

equations of state have been proposed in the literature with either an empirical, semi-

empirical or theoretical basis. Comprehensive reviews can be found in the works of Martin 

(1979), Gubbins (1983), Anderko (1990), Sandler (1994), Economou and Donohue (1996), 

Wei and Sadus (2000) and Sengers et al. (2000).  

 

The van der Waals equation of state (1873) was the first equation to predict vapour-liquid 

coexistence. Later, the Redlich-Kwong equation of state (Redlich and Kwong, 1949) 

improved the accuracy of the van der Waals equation by proposing a temperature 

dependence for the attractive term. Soave (1972) and Peng and Robinson (1976) proposed 

additional modifications of the Redlich-Kwong equation to more accurately predict the 

vapour pressure, liquid density, and equilibria ratios. Guggenheim (1965) and Carnahan and 

Starling (1969) modified the repulsive term of van der Waals equation of state and obtained 

more accurate expressions for hard sphere sys tems. Christoforakos and Franck (1986) 

modified both the attractive and repulsive terms of van der Waals equation of state. Boublik 

(1981) extended the Carnahan-Starling hard sphere term to obtain an accurate equation for 

hard convex geometries. 
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In addition to modeling small and simple molecules, considerable emphasis has been placed 

on modeling long and convex molecules. Based on theory of Prigogine (1957) and Flory 

(1965), an equation for molecules treated as chains of segments, which is called Perturbed-

Hard-Chain-Theory (PHCT) was constructed by Beret and Prausnitz (1975) and Donohue 

and Prausnitz (1978). To reduce the mathematical complexity of Perturbed-Hard-Chain-

Theory, Kim et al. (1986) developed a simplified version of the theory by replacing the 

complex attractive part by a simpler expression. At the almost same time, Vimalchand and 

Donohue (1985) obtained a fairly accurate multipolar mixture calculation by using the 

Perturbed Anisotropic Chain theory, and Ikonomou and Donohue (1986) extended the 

Perturbed Anisotropic Chain Theory to the Associated Perturbed Anisotropic Chain Theory 

by taking into account the existence of hydrogen bonding. 

 

Wertheim (1987) proposed a thermodynamic perturbation theory (TPT), which 

accommodates hard-chain molecules. Chapman et al. (1988) generalized the TPT model to 

obtain the compressibility factor of a hard-chain of segments. Ghonasagi and Chapman 

(1994) and Chang and Sandler (1994) modified TPT for the hard-sphere chain by 

incorporating structural information for the diatomic fluid (TPT-D). Sadus (1995) derived 

the simplified thermodynamic perturbation theory–dimer (STPT-D) equation from TPT-D. 

Sadus (1999b) later developed STPT-D to the empirical simplified thermodynamic 

perturbation theory-dimer (ESTPT-D) equation, and tested the accuracy of the equation 

against simulation data for hard-sphere chains containing up to 201 hard-sphere segments. 

Sadus (1999 a) also derived an equation of state for hard convex body chains from the TPT 

of hard sphere chains (Wertheim, 1987; Chapman et al., 1988). 



 52 

 

Jin et al. (1993), Povodyrev et al. (1996) and Kiselev (1997) developed theoretical crossover 

equations of state for pure fluids and binary mixtures which incorporate the scaling laws 

asymptotically close to the critical point and which are transformed into the regular classical 

expansion far away from the critical point. Kiselev (1998) used the modified Patel-Teja 

cubic equation of state (Patel and Teja, 1982) as a starting point to propose a general 

procedure for transforming any classical equation of state into a crossover equation of state. 

Wyczalkowska et al. (1999) also developed a global crossover equation of state, and Kiselev 

et al. (2001) extended the crossover modification of the statistical-associating fluid theory 

(Chapman et al., 1988, 1990) equation of state. Wyczalkowska et al. (2000) demonstrated 

that both pure H2O and D2O obey a universal scaled crossover equation of state in the critical 

region which satisfies corresponding state for the near-critical behaviour of the 

thermodynamic properties. Abdulkadirova et al. (2002) extended the pure component to 

binary mixtures (H2O + D2O) using a crossover equation of state. 

 

In this chapter we will review equations of state for high pressure with particular emphasis 

on critical points calculations. A crossover theory for equations of state is also discussed.  
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3.1  Equations of State for High Pressure Equilibria and Critical 
Phenomena 

 

3.1.1  Cubic Equations of State  
 

Cubic equations of state are equations, which when expanded have volume terms raised to 

the first, second, and third power. Most commonly encountered phase equilibrium 

calculations, such as vapour-liquid equilibria, involve only two phases for which a cubic 

equation is suitable. Cubic equations have the advantage that the three values of volume can 

be obtained analytically without the need for an iterative solution procedure.   

 

The van der Waals equation of state (1873) is the simplest cubic equation of state for fluid 

phase equilibria. It can be regarded as a “hard sphere term + attractive term” equation of 

state composed from the contribution of repulsive and attractive intermolecular interactions 

(Sadus, 1994). The van der Waals equation was the first equation capable of representing 

vapour-liquid coexistence. The pressure (p) is related to the temperature (T), ideal gas 

constant (R) and molar volume (V) via: 

 

2V
a

bV
RT

p −
−

=                   (3.1) 

 

It has two pure component parameters a and b. The parameter a is a measure of the attractive 

forces between the molecules, and b is related to the size of the molecules. Since the van der 

Waals equation of state is cubic in volume, three volumes exist for any given temperature 

and pressure. Usually, pc, Tc and Vc are known and Eq. 2.1 (Chapter 2) may be 

simultaneously solved to provide solutions for the parameters a and b: 
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Van Konynenburg and Scott (1980) successfully demonstrated that most of the critical 

equilibria exhibited by binary mixtures could be qualitatively predicted by the van der Waals 

equation of state, but it is rarely sufficiently accurate for critical properties and phase 

equilibria calculations. For example, the critical compressibility factor of all fluids including 

pure component and binary mixtures predicted by van der Waals equation is 0.375 (Eq. 3.2 

and Eq. 3.2 are used in Eq. 2.1 at the critical point), whereas the real value for different 

hydrocarbons varies from 0.24 to 0.29. Many modifications at the van der Waals equation of 

state have been proposed to address this deficiency. Five examples of cubic equations of 

state based on the van der Waals equation are listed in Table 3.1. 
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Table 3.1 Examples of Improved Cubic Equations of State 

Reference            Equations of state                                                 Eq. 

Redlich-Kwong (1949) 
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Soave-Redlich-Kwong (1972) 
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Peng-Robinson (1976) 
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Eq. (3.4) was proposed as an empirical modification of the van der Waals equation to make 

the attractive term temperature-dependent. The parameters a and b are usually expressed as 
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Spear et al. (1969) demonstrated that the Redlich-Kwong equation of state could be used to 

reliably calculate the vapour -liquid critical properties of binary mixtures. Chueh and 

Prausnitz (1967a, b) also showed that the Redlich-Kwong equation can be adapted to predict 

both vapour and liquid properties. Deiters and Schneider (1976) and Baker and Luks (1980) 
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have successfully applied the Redlich-Kwong equation to the high pressure phase equilibria 

of binary mixtures. Deiters and Pegg (1989) used the Redlich-Kwong equation with 

quadratic mixing rules to calculate phase diagrams for binary fluid mixtures and to classify 

them according to the global phase diagram. Polishuk et al. (1999) predicted the closed loop 

critical behaviour between type III and V with the Redlich-Kwong equation of state. 

 

Soave (1972) suggested to replace the term 
5.0T

a  with a more general temperature-dependent 

term a(T) (Eq. (3.5) in the Table 3.1), where 
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and ω  is the acentric factor. Soave (1972) calculated the vapour pressures of a number of 

hydrocarbons and several binary systems with the Soave-Redlich-Kwong equation, and 

compared the results of the calculations with experimental data. In contrast to the original 

Redlich-Kwong equation, Soave’s modification fitted the experimental (vapour-liquid) curve 

well and it was able to predict the phase behaviour of mixtures in the critical region. Elliott 

and Daubert (1987) improved the accuracy of the calculated critical properties of 95 binary 
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systems containing hydrocarbons. Zheng et al. (1999) also used the Soave-Redlich-Kwong 

equation to calculate the phase equilibria of systems containing methane, carbon dioxide and 

nitrogen, and compared the results of calculation with experimental data. 

 

Peng and Robinson (1976) redefined a(T) as  
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The Peng and Robinson equation of state was proposed as Eq. (3.6), it slightly improves the 

prediction of liquid volumes and predicts a critical compressibility factor of 307.0=cZ (the 

critical compressibility factor of the Redlich-Kwong equation is 0.333, and that van der 

Waals is 0.375). Peng and Robinson (1977) gave examples of the use of the Peng-Robinson 

equation for predicting the vapour pressure and volumetric behaviour of pure component and 

binary mixtures. In general, Eq. (3.6) performed as well as or better than Eq. (3.5). Han et al. 

(1988) reported that the Peng-Robinson equation of state was superior for predicting vapour-

liquid equilibrium in hydrogen and nitrogen containing mixtures. Harstad et al. (1997) 

showed that the Peng-Robinson equation of state could be used to obtain a relatively 

accurate, noniterative and computationally efficient correlation of high-pressure fluid 
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mixtures used in gas turbines and rocket engines. Zhao and Olesik (1999) used the Peng-

Robinson equation of state to calculate methanol and CHF3 binary mixtures. The results 

showed that the Peng-Robinson equation of state with two temperature-independent binary 

parameters was capable of representing the experimental data over the entire temperature 

range with an average relative deviation within 6%.  

 

Stryjek and Vera (1986) proposed the following modified temperature functionality for the 

Peng-Robinson equation of state to extend the range of applicability to polar components: 
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where 1k  is an adjustable parameter characteristic of each pure component. The Stryjek-

Vera-Peng-Robinson equation of state (Stryjek and Vera, 1986) was proposed as Eq. (3.7). 

In addition, it must be noticed that optimization of 1k  values was performed using a 

particular set of critical constants (Stryjek and Vera, 1986). The correct application of 

Stryjek-Vera-Peng-Robinson equation of state requires usage of this set.   
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The Peng-Robinson and Soave-Redlick-Kwong equations are widely used in industry 

(Sadus, 1994). The advantages of these equations are they are easy to use and that they often 

accurately represent the relation between temperature, pressure, and phase compositions in 

binary and multicomponent systems. These equations only require the critical properties and 

acentric factor for the generalized parameters. Little computer resources are required and 

those lead to good phase equilibrium correlation. However, the success of these 

modifications is restricted to the estimation of phase equilibria pressure. The calculated 

saturated liquid volumes are not improved and they are invariably higher than the measured 

data. 

 

Patel and Teja (1982) proposed a third constant c into the van der Waals equation’s attraction 

term, resulting in Eq. (3.8). The equation of state allows for adjustment of the critical 

compressibility factor Zc instead of predicting a fixed value. This added flexibility improves 

saturation property predictions for polar fluids while maintaining a simple form that doesn’t 

require a large amount of pure component or mixture experimental data for accuracy.  

 

As with the van der Waals equation of state, the parameters a and b in the Patel-Teja 

equation are evaluated using the conditions at  the critical point given by Eq. (2.1). The 

condition for the third parameter c is: 
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Instead of having a fixed value of the critical compressibility factor fixed by parameters a 

and b , the value is the arbitrary, substance specific, empirical parameter cη . cη  is 

determined by minimizing the errors between experimental saturated liquid volume and 

those calculated by the equation of state. Patel and Teja (1982) calculated cη  for 38 

substances. They also correlated cη  to the acentric factor ω , for non-polar substances 

yielding the following equation. 

 

20211947.0076799.0329032.0 ωωη +−=c              (3.21) 

 

Satisfying the conditions of Eq. (2.1) and Eq. (3.20) yields the following equations for the 

parameters a, b, and c: 
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where,  
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cbbcca ηηη 31)21(33 22 −+Ω+Ω−+=Ω              (3.26) 

 

and bΩ  is the smallest positive root of the following cubic equation: 
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In the Eq. (3.22), the term )(Tα is given by: 
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F is a substance specific empirical parameter also determined by minimizing errors between 

experimental saturated vapour pressures and those calculated by the equation of state. Patel 

and Teja (1982) calculated F for the same 38 substances and also correlated it to the acentric 

factor for non-polar substances: 
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Smith (1995) gave an expression for the compressibility factor Z, 
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where 
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Eq, (3.30) will yield one to three positive real roots depending upon the number of phases in 

the system. If a vapour and liquid phase are present, the smallest root represents the liquid’s 

compressibility while the largest root is that of the vapour. 

 

Palenchar et al. (1986) have reported a rare, direct comparison of the quality of prediction of 

the critical locus using different cubic equations of state. In addition to the Redlich-Kwong, 

Peng-Robinson and Soave-Redlich-Kwong equations, calculations for equations of state 

proposed by Teja and Patel (1982) and Adachi et al. (1983) were reported for the carbon 

dioxide + methane, butane, decane or water; methane + hexane or heptane; and propane + 

hexane and water + benzene binary mixtures. They concluded that the critical temperatures 

and pressures of type I systems could be adequately predicted although there was a 

substantial discrepancy between theory and experiment for the critical volume. The Peng-

Robinson and Soave-Redlich-Kwong equations yielded a more accurate representation of 

mixtures exhibiting a discontinuity in critical equilibria than the Patel and Teja equation. 
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Polishuk et al. (1999) compared the critical lines predicted by Redlich-Kwong, Peng-

Robinson, Soave-Redlich-Kwong, Stryjek-Vera-Peng-Robinson, Patel-Teja and Trebble-

Bishnoi (1987) equations of state using classical mixing rules with the experimental data 

available for the mixtures of methane + alkanes up to and including octane. The results show 

that different cubic equation of state can yield similar semi-quantitative and even quantitative 

predictions with the optimised values. 

 

3.1.2 Noncubic Equations of State 

 

The development of cubic equations of state has been focused on obtaining an improved 

empirical representation of attractive interactions. Improvements to cubic equations 

emphasize obtaining better agreement with experiment at low temperatures and pressures for 

phase equilibria. At high pressures and temperatures, repulsive interactions can be expected 

to be the dominant influence determining the properties of the fluid. There are many accurate 

representations which have been developed for the repulsive interactions of hard spheres and 

which were incorporated into equation of state. In general, the effect of using an accurate 

model of repulsion is to generate a noncubic equation of state. 

 

Normally, noncubic equations of state are of two broad types. One type is obtained by 

simply modifying the repulsive term of the van der Waals equation (hard sphere term). 

Another type is obtained by modifying both attractive and repulsive terms or combining an 

accurate hard sphere model with an empirical temperature dependent attractive contribution. 
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Many improvements to the simple van der Waals hard sphere repulsive term have been 

reported (Mulero et al., 2001). Some important hard sphere expressions are summarised in 

Table 3.2. A comprehensive review of hard sphere terms is given by Mulero et al. (2001). 

Table 3.2 Summary of hard sphere expressions of modification of repulsive term of van der 
Waals equation. Where y = b/(4V) is a temperature independent packing fraction of spherical 
molecules. 

Reference Hard sphere expression               Eq. 
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The Guggenheim equation of state (1965) is a more accurate hard sphere model which has 

been extensively used for the calculation of critical equilibra: 
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Both a and b can be obtained by using critical properties ( ,/4963.0 22
cc pTRa =  

cc pRTb /18727.0= ), and at critical point, the compressibility factor 

3611.0)/( == cccc RTVpZ . The Guggenheim equation has been used to predict the critical 

properties of a diverse range of binary mixtures (Hicks and Young, 1976; Hurle et al., 

1977a,b; Hicks et al. 1977, 1978; Toczylkin and Young, 1977, 1980a, b, c; Waterson and 

Young, 1978; Semmens et al., 1980; Sadus and Young, 1985a, b; Sadus, 1992a, 1994; and 

Wang et al. 2000). Despite the diversity of the systems studied, good results were 

consistently reported for the vapour-liquid critical locus. The critical liquid-liquid line of 

type II binary mixtures was also represented adequately. In contrast, calculations involving 

type III equilibria are typically only semi-quantitative (Christou et al., 1986) because of the 

added difficulty of predicting the transition between vapour-liquid and liquid-liquid 

behaviour.  

 

Carnahan and Starling (1969) obtained an accurate representation of hard sphere interactions. 

The Carnahan-Starling-van der Waals (CSvdW) equation is formed by coupling this hard 

sphere term with the van der Waals attractive term (Carnahan and Starling, 1972): 
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The covolume ( cpRTb /18727.0= ) and attractive ( cc pTRa /4963.0 22= ) equation of state 

parameters are related to the critical properties, and critical compressibility factor 

35896.0=cZ .    

 

Sadus (1993) has demonstrated the CSvdW equation of state can be used to predict type III 

equilibria of nonpolar mixtures with considerable accuracy. Yelash and Kraska (1998) found 

several types of closed loop liquid-liquid immiscibility behaviour in binary mixtures based 

on CSvdW equation of state. 

 

Boublik (1981) has generalised the Carnahan-Starling hard sphere potential for molecules of 

arbitrary geometry via the introduction of a nonsphericity parameter (a). Svejda and Kohler 

(1983) employed the Boublik expression in conjunction with Kihara’s (1963) concept of a 

hard convex body (HCB) to obtain a generalised van der Waals equation of state: 
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In Eq. (3.44), α  is the deviation from spherical geometry which is obtained by considering 

the mean radius R*, surface area S* and volume V* of a convex body: 

 

*

**

3V
SR=α                  (3.45) 

 

In the limiting case of a hard sphere, 1=α , and Eq. (3.44) becomes identical to the 

Carnahan-Starling equation Eq. (3.43).  

 

Eq. (3.44) has been used for the calculation of the vapour-liquid critical properties of binary 

mixtures containing nonspherical molecules (Sadus et al., 1988; Christou et al. 1991). The 

results obtained were slightly better than could be obtained from similar calculations using 

the Guggenheim equation of state. Sadus (1993) proposed an alternative procedure for 

obtaining the equation of state parameters. Eq. (3.44) in conjunction with this modified 

procedure can be used to predict type III critical equilibria of nonpolar binary mixtures with 

a good degree of accuracy. 

 

There are many other nonspherical or hard chain equations of state which have not been used 

for the calculation of critical equilibria. Vimalchand and Donohue (1989) have reviewed 

several hard chain equations of state.  Van Pelt et al. (1992) have applied a simplified version 
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of the perturbed hard chain theory (SPHCT) equation of state proposed by Beret and 

Prausnitz (1975) to binary critical equilibria.  

 

The SPHCT equation of state has the following form: 
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where 1)2/exp( −= ckTqY ε  and Vv /7405.0 *=η , where v* is the molecular volume 

parameter, ε  is the intermolecular potential energy per unit area; c is 1/3 of the total number 

of external degrees of freedom of a molecule; q is the number of segments per molecule and 

z is the close-packed coordination number. In common with other equations of state, good 

results were obtained for the critical pressures and temperatures of many binary mixtures. 

The calculations cannot be expected to yield accurate critical volumes for binary mixtures 

because the critical volume of the components was used as an adjustable parameter to 

optimise the agreement of theory and experiment for the critical pressures and temperatures 

of the pure components. Eq. (3.46) was successfully used (van Pelt et al., 1995) to 

qualitatively reproduce a variety of binary mixture phenomena including type VI behaviour. 

Recently, development of shape factor model equations of state were reported by Huber and 

Ely (1994), and Estela-Uribe and Trusler (1998). 
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Christoforakos and Franck (1986) and Heilig and Franck (1989) have developed equations 

specifically for high pressure equilibria which also incorporate the Carnahan-Starling hard 

sphere term. The Christoforakos -Franck equation of state introduces a temperature 

dependent covolume term 3.0)/(4 TTb c=β  into the repulsive term: 
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The attractive term was obtained by examining the virial coefficient of gases in terms of a 

square-well potential. The ε  parameter reflects the depth of the potential, whereas λ  is the 

relative width of the well. The equation has been successfully applied to the high pressure 

phase behaviour of some binary aqueous mixtures (Christoforakos and Franck, 1986; Franck, 

1987). In particular, the type III critical locus of binary mixtures of H2O + Ar, Xe, N2, CH4 

or carbon dioxide is predicted accurately. 

 

The Heilig-Franck (1989) equation of state uses the same form of repulsive term of Eq. 

(3.47), but it has a different attractive term which is obtained by applying the Padé 

approximation of the virial coefficients of a square-well fluid: 
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where B and C are the second and third virial coefficients of a square-well fluid respectively. 

Accurate calculations of the critical properties of binary mixtures have been reported (Heilig 

and Franck, 1989, 1990). Mather et al. (1993) have demonstrated that Heilig-Franck equation 

of state can accurately predict type III critical loci of H2O + Ne and H2O + Kr mixtures. 

 

Deiters (1981a, b) has adopted a semiempirical approach to construct an equation with three 

adjustable parameters a, b and c. 
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where ccVb 06911.0,6887.0,7404.0,/ 0 −==== λρηρ and yacTTeff /)/( λρ+= . 

Parameter I is a hard sphere constant, and the values of y range from 1 for a dilute gas and 

between 0.34 and 0.46 for dense fluids. In Eq. (3.49), the Carnahan Starling expression for 

hard spheres has been adjusted to accurately fit the experimental vapour pressure data for Ar 

via parameter c0, and deviations from spherical geometry are reflected in values of c > 1. The 

equation can be used to accurately predict the vapour -liquid properties of binary mixtures 

(Deiters, 1982; Deiters and Swaid, 1984; Calado et al., 1981). Calculations of the vapour-

liquid critical locus of binary mixtures (Mainwaring et al., 1988a, b) indicate that good 

results can only be obtained for mixtures of molecules of similar size. The equation has not 
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been extensively tested for noncontinuous critical equilibria, but type III critical properties of 

H2O + benzene and H2O + He can be adequately predicted (Mainwaring et al., 1988a). 

 

3.1.3 Thermodynamic Perturbation Theory Equations of State 

 

The hard chain equations of state are potentially important for developing accurate equations 

of state for macromolecules. Historically, attention has been focused on using accurate hard 

sphere models to represent the repulsive interactions of geometrically simple molecules. 

Progress has been achieved in depicting the properties of hard nonspherical bodies (Sadus, 

1995).  

 

Boublik (1981) used Kihara’s (1963) concept of a hard convex body (HCB) as the basis of 

an equation of state for nonspherical hard bodies. Flory’s concept of excluded volume has 

been incorporated (Dickman and Hall, 1986) in a reasonably accurate hard chain equation of 

state. Chiew (1990) developed a rigorous theory for representing hard chains, and Song et al. 

(1994) formulated the theory into a useful equation of state for polymers. Wertheim (1987) 

proposed a thermodynamic perturbation theory (TPT) which accommodates hard-chain 

molecules. Chapman et al. (1988) generalised Wertheim’s TPT model to obtain the equation 

of state for the compressibility factor of a hard chain of m segments. The form of the 

compressibility factor is 
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where )(σHSg  is the hard sphere site-site correlation function at contact, σ  is the hard 

sphere diameter, 6/3ρσπ my =  is the packing fraction, and ρ  is the number density. The 

compressibility factor of hard sphere can be accurately determined from the Carnahan-

Starling equation. For the Carnahan-Starling equation, the site-site correlation function is 
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Ghonasgi and Chapman (1994) modified TPT for the hard sphere chain by incorporating 

structural information for the diatomic fluid. The compressibility factor of a hard chain can 

be determined from the hard sphere compressibility factor and the site-site correlation 

function at contact of both hard spheres ( HSg ) and hard dimers ( HDg ) 
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Chiew (1991) obtained the site-site correlation result for hard dimers: 
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Chang and Sandler (1994) proposed TPT-D1 and TPT-D2. The form of TPT-D1 can be 

expressed as 
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TPT-D2 can be represented as 
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Starting from the points of Ghonasgi and Chapman (1994) and Chang and Sandler (1994) 

above, Sadus (1995) proposed that, in general, 

 

)( cygg HSHD += α                 (3.56) 
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where a and c are the constants for a straight line and the values can be obtained by fitting 

the molecular simulation data for HSg  and HDg , and obtained a new equation of state, called 

the simplified thermodynamic perturbed theory-dimer (STPT-D) equation of state. The 

general form of the STPT-D equation of state for pure hard sphere chains is 
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Sadus (1995) applied the STPT-D equation to the prediction of both the compressibility 

factors of 4-, 8-, 16-, 51- and 201-mer hard chains and the second virial coefficients of up to 

128-mer chains. Comparison with molecular simulation data indicated that the STPT-D 

equation generally predicts both the compressibility factors and the second virial coefficient 

more accurately than other equations of state (Chiew equation, GF-D, TPT-D1, TPT-D2). 

 

By using some elements of the one fluid theory, Sadus (1996) extended the STPT-D 

equation to hard sphere chain mixtures with no additional equation of state parameters 

required. The compressibility factor predicted by the STPT-D equation of state was 

compared with molecular simulation data for several hard sphere chain mixtures containing 

components with either identical or dissimilar hard sphere segments. Good agreement with 
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simulation data was obtained when the ratio of hard-sphere segment diameters for the 

component chains is less than 2.  

 

Recently, Sadus (1999a) proposed an empirical simplified thermodynamic perturbed theory-

dimer (ESTPT-D) equation of state, which is a simplification of STPT-D equation. In the 

equation of state an empirical relationship (Shah et al., 1994) for ZHS is used, 
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where 2864.10 =k  and 8225.21 =k  are empirically evaluated constants (Shah et al., 1994). 

The addition of Eq. (3.58) dimer properties into Eq. (3.57), the resulting ESTPT equation 

(Sadus, 1999a) is 
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Sadus (1999b) extended the hard sphere chain equation to hard convex body chain equation 

of state (HCBC). The compressibility factor of a hard-convex-chain of m segments is 

obtained as 
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where )(σHCBg  is the hard convex body site-site correlation function at contact, the symbol 

σ  in Eq. (3.60) represents the breadth of the HCB. The compressibility factor of a hard 

convex body can be accurately determined from the HCB equation.  For the HCB equation, 

the site-site correlation function is  
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where RS  is the ratio of the actual surface area of the HCB HCBS  to the surface area of hard 

spheres )(equivSHS  occupying a diameter equivalent to the HCB diameter: 
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Sadus (1999b) discussed the details on how to obtain RS , and gave the general form of 

packing fraction for pure component, 
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Sadus (1999b) examined the effect of molecular shape on the compressibility factor and the 

second virial coefficient for chain molecule consisting of spheres, prolate spherocylinders, 

oblate spherocylinders and doublecones, and found that these properties are ve ry sensitive to 

segment shape. 

 

3.2 Mixing rules 
 

Most models of the fluid state such as conformal solution theory, perturbation models and 

equations of state are initially developed for pure substances. Therefore, directly extending 

an existing pure fluid model to multicomponent equilibria is an important task (Sadus, 

1992a). This is most commonly achieved by mixing rules and combining rules which relate 

the properties of the pure components to the properties of the mixtures. The discussion will 

be limited to the extension of parameters a and b. These two parameters have a real physical 

significance and are common to many realistic equations of state. 

 

The simplest possible mixing rule is a linear average of the equation of state parameters: 
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∑=
i

iibxb                  (3.65) 

 

Eq. (3.64) is sometimes employed (Han et al., 1988) because of its simplicity, but Eq. (3.64) 

is rarely used because it does not account for the important role of unlike interactions in 

binary fluids. Consequently, employing both Eq. (3.64) and Eq. (3.65) would lead to the poor 

agreement of theory with experiment. 

 

The van der Waals one-fluid prescriptions are the most widely used mixing rules: 
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i j
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∑∑=
i j

ijji bxxb          (3.67) 

 

where aii and bii are the equation of state parameters for pure components and cross 

parameters aij and bij (i ? j) are determined by an appropriate combining rule. 
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Eq. (3.66) and Eq. (3.67) are based on the implicit assumption that the radial distribution 

function of the component molecules is identical, and they both explicitly contain a 

contribution from interactions between dissimilar molecules. A comparison ( Harismiadis et 

al., 1991) with computer simulation has concluded that the van der Waals mixing rules are 

reliable for mixtures exhibiting up to an eight-fold difference in the size of the component 

molecules. The performance of the van der Waals mixing rules has also been thoroughly 

tested for several equations of state by Han et al. (1988). They used the van der Waals 

mixing rule to obtain parameter a and a linear mixing rule to obtain parameter b. The results 

showed that most of equations of state with the van der Waals mixing rules were capable of 

representing vapour-liquid equilibria with only one binary adjustable parameter for obtaining 

aij. Eq. (3.65) and Eq. (3.66) were adequate for mixtures of nonpolar and slightly polar 

compounds (Peng and Robinson, 1976; Han et al., 1988). Voros and Tassios (1993) 

compared six mixing rules (the one- and two parameters van der Waals mixing rules; the 

pressure- and density-dependent mixing rules; two mixing rules based on excess Gibbs 

energy models: MHV2 and Wong-Sandler) and concluded that the van der Waals mixing 

rules give the best results for nonpolar systems. For the systems which contained strongly 

polar substances such as alcohol, water and acetone, the van der Waals mixing rule did not 

yield reasonable vapour-liquid equilibrium results. Anderko (1990) gave some examples of 

the failure of the van der Waals mixing rules for strongly nonideal mixtures. There is some 

evidence (Deiters, 1987) that the following mixing rules are more approprate at high 

pressure: 
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ijijji xx γγ
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∑∑=
i j

ijjixx γγ σσ 0                 (3.69) 

 

where a and b are proportional to 3
00σε  and 3

0σ , respectively. 0ε  and 0σ  are the 

characteristic attractive energy and collision diameter. The parameter γ  is obtained from 

comparison with experimental data, and is typically assigned a value of either 2 or 2.4. Some 

attempts have been made to estimate it from theoretical considerations. In terms of the 

conformal parameters (recall 3
ijij gh = ) the above relationships can be represented as: 
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i j
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γγ                (3.70) 

 

∑∑=
i j

ijji gxxg γγ                 (3.71) 

 

Sadus (1989) used conformal solution theory to derive an alternative to the conventional 

procedure for obtaining parameter a of equation of state. Instead of proposing an average of 

pure component parameter data, the parameter a for the mixture is calculated directly. 
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Consequently, a is a function of composition only via the conformal parameters and the 

contribution from the combinatorial entropy of mixing. The parameter a is obtained by 

taking the positive root of the following qua dratic equation: 
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where superscripts '  and ''  denote successive differentiation of the conformal parameters, 

and θ  and φ  are characteristic of the equation of state. The main advantage of Eq. (3.72) is 

that the parameter a can be calculated directly from the critical properties of pure 

components without using combining rules for the contribution of unlike interactions. Sadus 

(1992a, b) has applied the above equation to the calculation of the vapour-liquid critical 

properties of a wide range of binary mixtures. The agreement was generally very good in 

view of the fact that no adjustable parameters were used to arbitrarily optimise the agreement 

between theory and experiment. 

 

Huron and Vidal (1979) have developed mixing rules from the excess thermodynamic 

properties of mixing. For example, in the case of the van der Waals equation and assuming a 

simple model of the energy of the fluid, the following relationship (Mollerup, 1986) is 

obtained: 
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where bVy /= , iii bVy /=  and GE is the excess Gibbs function. The above approach is 

mainly limited to low pressure equilibria but it may be useful for predicting critical solution 

temperature phenomena. Another approach, which is discussed elsewhere (Hoheisel and 

Kohler, 1984), is the concept of local composition. 

 

Many of the above density dependent prescriptions are undoubtedly more accurate than the 

van der Waals model at high densities. But for high pressure phenomena, there is insufficient 

data to make an assessment. Some computer simulation of the high pressure behaviour of 

binary fluids would be useful in this instance. It is clear that the increased complexity is a 

disadvantage for high pressure calculations, particularly if reliable theoretical estimates of 

parameters such as γ  and gij (Eq. 3.71) cannot be obtained and empirical, methods must be 

adopted. High pressure phenomena also occur over a range of densities. The van der Waals 

prescriptions are certainly appropriate for vapour-liquid phenomena but other rules may be 

beneficial for dense liquid-liquid critical phenomena. The analysis of type III phe nomena, 

where there is a transition between vapour -liquid and liquid like densities, could also benefit. 

However it is difficult to isolate the effect of mixing rules on the phase behaviour of fluids 

because most equation of state calculations rely on additional combining rule parameters for 

their accuracy. It appears unlikely that any of the above prescription could eliminate this 
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feature. Thus, the overall effect may be to increase the complexity of the calculations without 

necessarily improving the accuracy and genuine predictive capability. 

 

A different approach has been adopted by Boublik (1970) and Mansoori et al. (1971). They 

proposed a direct extension of the Carnahan-Starling hard sphere term, 
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where 

VFNy A 6/π=                 (3.75) 
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∑=
i

iixD σ                  (3.78) 
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At low densities, the compressibility factor predicted by Eq. (3.71) is identical to the 

Carnahan-Starling equation with the one-fluid model. However, at moderate and high 

densities, there is a significant deviation, particularly if molecules of dissimilar size are 

involved. Therefore, the analysis of vapour-liquid properties is unlikely to be affected, but in 

common with other density dependent mixing rules, it may be beneficial for some dense 

fluid critical phenomena. Dimitrelis and Prausnitz (1986) have concluded that the equation is 

particularly advantageous for the prediction of vapour -liquid equilibria if the molecular size 

ratio 3
21 )/( σσ  exceeds 2.  

 

The temperature dependence of the equation of state parameters is typically obtained by 

scaling the values obtained at the vapour -liquid critical point to lower temperatures and 

pressures. The critical values are adequate for high pressure equilibria. The exception is 

liquid-liquid phenomena for which the vapour -liquid values are intuitively inadequate. The 

following equation (Christoforakos and Franck, 1986) is acceptable: 

 

3.0
2112 )/)(()( TTTbTb =              (3.79) 

 

It should be noted that the temperature dependence of the parameter a is normally reflected 

in a lower than normal ? value (see Eq. 3.84) and that the agreement with experiment is often 

very good without formally introducing any temperature dependence in the b term.  
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Wong and Sandler (1992) used the Helmholtz function to develop mixing rules to satisfy the 

second virial condition. For the mixture parameters of an equation of state, a and b are 
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where C is a constant dependent on the equation of state selected and EA∞  is the excess 

Helmholtz function at infinite pressure, and 
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where ijk  is a binary interaction parameter. 

 

Wong and Sandler (1992) tested the Eq. (3.80) and Eq. (3.81), and reported that they were 

accurate in describing both simple and complex phase behaviour of binary systems for 
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diverse systems. Wong et al. (1992) demonstrated that the Wong-Sandler mixing rules can 

be used for highly nonideal mixtures. Huang and Sandler (1993) compared the Wong-

Sandler mixing rules for nine binary systems. They demonstrated that the mixing rules can 

be used to make high pressure vapour-liquid equilibrium predictions from low pressure data. 

Orbey and Sandler (1994) used the Wong-Sandler mixing rule to correlate the vapour-liquid 

equilibria of various polymer + solvent and solvent + long chain hydrocarbon mixtures. They 

concluded that the Wong-Sandler mixing rule can correlate the solvent partial pressure in 

concentrated polymer solutions with high accuracy over a range of temperatures and 

pressures with temperature-independent parameters. 

 

To go smoothly from activity coefficient-like behaviour to the van der Waals one fluid 

mixing rule, Orbey and Sandler (1995) slightly reformulated the Wong-Sandler mixing rules 

by rewriting the cross second virial term given in Eq. (3.82) as 
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Orbey and Sandler (1995) tested five binary systems, and showed that this new mixing rule 

was capable of both correlating and predicting the vapour-liquid equilibrium of various 

complex binary mixtures accurately over wide ranges of temperature and pressure. Castier 

and Sandler (1997a, b) performed critical point calculations in binary systems utilizing cubic 

equations of state combined with the Wong-Sandler mixing rules, and investigated the 
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influence of the mixing rules on the shape of the calculated critical phase diagrams. The 

results showed that the combination can obtain many different types of critical phase 

diagrams. Rudolph et al. (2000) used the Peng-Robinson equation of state with the Wong-

Sandler mixing rule to investigate binary mixtures of water plus surfactant systems 

containing C4 E1, C6E3, C7E3 and C7E5. They found that the model fitted the experimentally 

found type of phase behaviour quite correctly. Comparison and evaluation for various 

mixing rules can be found in the works of Knudsen et al. (1996), Michelsen and Heidemann 

(1996), Wang et al (1996), Orbey and Sandler (1996), Twu et al. (1998), Wei and Sadus 

(1999b) and Saghafi and Moshfeghian (2000). 

 

3.3 Combining Rules 
 

Any realistic mixture prescriptions will invariably contain contributions from interactions 

between unlike molecules. This means that the cross term ija  and ijb  ( ji ≠ ) must be 

evaluated. The most widely used combining rule for the ija  term was first proposed by van 

der Waals: 

 

jjiiijij aaa ξ=               (3.84) 

 

Alternatively, the following combining rule for critical calculations can be used, 
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The ijξ  term (also commonly defined as 1-kij) is frequently introduced into combining rules 

to optimise the agreement between theory and experiment. The ijξ  parameter is frequently 

interpreted as reflecting the strength of intermolecular interaction. This interpretation is 

supported by the fact that values of ijξ  obtained from the analysis of the critical properties of 

many binary mixtures consistently decline with increasing size difference between the 

component molecules. Mixtures of molecules of similar size, but different molecular 

interactions, are associated with different interaction parameters. Nonetheless, the 

requirement for ?ij values to optimise agreement between theory and experiment is also 

testimony to the inadequacy of the combining rule, mixture prescriptions and the equation of 

state. It has been frequently documented (Mainwaring et al. 1988b; Elliot and Daubert, 1987) 

that different ?ij values are required to obtain optimal agreement between theory and 

experiment for vapour-liquid and liquid-liquid critical equilibria, respectively. 

 

The most widely used combining rules for ijb  are the simple arithmetic rules: 
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and the Lorentz combining rule (Hicks and Young, 1975; Sadus, 1992a, 1994): 
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b

+
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Both the simple arithmetic and Lorentz combining rules yield nearly identical results for 

mixtures of molecules of similar size, but the discrepancy increases substantially for 

mixtures of molecules of very dissimilar size. The adjustable parameter ijζ  is used to 

optimise the agreement between theory and experiment. It is generally found that the 

parameter ijζ  is not required for the accurate prediction of vapour-liquid critical properties 

(Sadus, 1994). Similarly, good agreement between theory and experiment for type II liquid-

liquid equilibria can usually be obtained by solely adjusting the ijξ  term and setting ijζ  = 1. 

However, obtaining an optimal ijζ  parameter is essential for the accurate representation of 

type III behaviour. It is found (Sadus, 1993) that the arithmetic combining rule substantially 

overestimates the two-phase region, whereas the Lorentz rule is more accurate but it extends 

the one-phase region. Sadus (1993) has examined type III behaviour of nonpolar mixtures 

using both arithmetic and Lorentz combining rules. Good agreement between theory and 

experiment could be obtained by determining both the optimal ijξ  and ijζ  parameters.  

 

Sadus (1993) proposed an alternative combining rule by taking a 2:1 geometric average of 

the Lorentz and arithmetic rules without the parameter ijζ , that is, 
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Sadus (1993) reported that the new combining rule (Eq. 3.88) is generally more accurate that 

either the simple arithmetic or Lorentz combining rules. 

 

3.4 Crossover Equation of State 
 

Chen et al. (1990) and Jin et al. (1993) introduced a theory that incorporates scaling laws 

asymptotically close to the critical point and that are transformed into the regular classical 

expansion far away from the critical point, and this lead to the crossover equations of state. 

Although the original crossover equation of state gives an accurate representation of the 

thermodynamic properties of fluids in a wide region around the critical point of pure 

components, it cannot be extrapolated to low densities (Kiselev, 1998). 

 

Fox (1983) proposed an approach to the incorporation of scaling laws in classical equations 

of state. The idea of the approach consists in the renormalization of the temperature and the 

density in the equations of state. The result is that the temperature and the density become 

non-analytic scaling functions of the dimensionless distance to the critical point. Kiselev 

(1998) developed a cubic crossover equation of state based on the non-classical critical 

phenomena for pure fluids which incorporates the scaling laws asymptotically close to the 
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critical point and which is transformed into the original cubic equation of state far away from 

the critical point.  

 

3.4.1  Classical Expression for the Critical part 

 

In the critical region, the van der Waals equation of state corresponds to the mean-field, or 

Landau theory of critical phenomena (Laudau and Lifshitz, 1980; Patashinskii and 

Pokrovskii, 1979). The main assumption of the classical theory of critical phenomena is that 

the critical part of the Helmhotz function, A∆  of the system can be represented by a Taylor 

expansion in the powers of the order parameter (Kiselev, 1998) 
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i j

ji
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where 1/ −= cTTτ  is the dimensionless deviation of the temperature T from the critical 

temperature Tc , ija  are the system-dependent coefficients, and η∆  is an order parameter 

(Landau and Lifshitz, 1980). In the critical region 1|| <<τ  and || η∆ <<1, therefore, there are 

two main terms in Eq. (3.89) 
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that correspond to the critical phenomena (Landau and Lifshitz, 1980). Eq. (3.90) is valid 

only in the temperature region 1|| <<<< τGi  (Gi is the Ginzburg number, Landau and 

Lifshitz, 1980) where the long-scale fluctuations in the order parameter are negligible 
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(Laudau and Lifshitz, 1980; Patashinskii and Pokrovskii, 1979). If Gi<<|| τ , the singular 

part of the thermodynamic potential of a system becomes a non-analytical scaling function of 

the τ  and η∆ . 

 

A theoretical approach for constructing a crossover expression for the thermodynamic 

potential of a system in the critical region based on the renormalization-group calculations of 

Nicoll and Bhattachafjee (1981) and Nicoll and Albright (1986) has been developed by Chen 

et al. (1990). Using this approach, the critical fluctuations close to the  critical point result is: 
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where, βα ,  and γ  are critical exponents, )( 2τK is the kernel term, which provides the 

correct scaling behaviour of the isochoric specific heat asymptotically close to the critical 

point (Kiselev, 1998),  
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where, Y is a crossover function to be determined from the set of coupled algebraic equations 

by Jin et al. (1993). 

 

Eq. (3.91) is equivalent to Eq. (3.90) with the replacement of the dimensionless temperature 

τ  and the order parameter η∆  by the renormalized values (Kiselev, 1998): 
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and adding the kernel term )( 2τK . As one moves further from the critical point, || τ  and 

|| η∆  increase, more terms in Eq. (3.89) and Eq. (3.90) may be considered.  

 

3.4.2  Crossover Expression  

 

It is well-known the Helmholtz energy per mole (Sandler, 1999) that can be described as 

 

∫ +−= idealApdVVTA ),(               (3.94) 

 

where idealA  corresponds to the temperature dependent function of the ideal-gas part of the 

Helmholtz energy. 

 

For a classical equation of state ),( TVp , can be written in the dimensionless form 

 

RT
PV

p c=
~

               (3.95) 

 

The dimensionless Helmholtz energy can be represented in the form 

 



 94 

)()(),(  
1),(

),( 0

~

0

~~
~

~

TuTPVVTA
RT

A
dV

V
pRT

RTRT
VTA

VTA ideal

c

+∆−∆∆∆=+−== ∫  

     (3.96) 

 

where ),(
~

VTA ∆∆∆  corresponds to the critical part of the Helmholtz function, 1−=∆ rTT  

( cr TTT /= ) is the dimensionless deviation of the temperature from the critical temperature 

Tc , and 1/ −=∆ cVVV  is also the dimensionless order parameter, RTVTVpTp cc /),()(0

~

=  

is the dimensionless pressure at the critical isochore cVV =  and 0

~

u  is relation to employed 

equation of state.  

 

T∆  and V∆  are needed to renormalized in the critical part of the classical Helmholtz 

function ),(
~

VTA ∆∆∆  according to Eq. (3.95) by Kiselev (1998). The critical temperature 

and pressure of the equations of state can be taken from available measurements or 

predictions, while the critical density is usually found as fitting parameter of the model, 

chosen to the best description of the vapour-liquid equilibrium surface far away from the 

critical point. Since any classical equation of state does not reproduce the thermodynamic 

surface of a fluid in the critical region, the critical density found by this method does not 

coincide with the real critical density of the system (Kiselev, 1998). The additional terms to 

take into account the difference between the classical critical temperature Tc and critical 

volume Vc , and the real critical parameters TRc and VRc  were introduced in Eq. (3.94) by 

Kiselev (1998). The new forms of dimensionless temperature 
~

τ   and the order parameter 

η∆  
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where the order parameter 1/ −=∆ cVVη , while Rccc TT /∆=∆τ  and Rccc VV /∆=∆η  are 

the dimensionless shifts of the critical temperature and the critical volume, respectively. 

Parameters TRc and VRc are the real critical temperature and volume of fluid. The crossover 

function Y in Eqs. (3.97) and (3.98) can be written in the parametric form as 
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and the parametric variable q can be found from the solution of the equation 
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359.1)21(/)2(2 =−−= βγβγLMb  is the linear-model parameter (Kiselev and Sengers, 

1993). The terms τ∝  and 2τ∝  correspond to a projection of the rectilinear diameter of the 

coexistence curve in the temperature-density variables )1(2/)( τρρρρ dcLVd +=+=  on 

the temperature-volume projection )1(/1 2
21 ττρ ddVV cdd ++≅= . 
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To complete the transformation of the classical Helmholtz function into the crossover form, 

we must replace the classical dimensionless temperature T∆  and the volume V∆  in Eq. 

(3.96) with the renormalized values 
~

τ  and
~

η∆ , and the kernel term ).( 2τK  The crossover 

expression for the Helmholtz function is 
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3.4.3  Crossover Equation of State 

 

A crossover equation of state incorporates the scaling laws asymptotically close to the 

critical point and is transformed into the original equation of state far away from the critical 

point. The general form of the crossover equation of state obtained from the crossover 

expression in Eq. (3.102): 
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For the Patel-Teja crossover equation of state (Kiselev, 1998), the value of 0

~

p  is: 
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and the critical part 
~

A∆  is given by 

 

32

~~

1

~

3

~
2

~~

1

~
~~~ )(

1/

1/
ln

)(
1ln),(

bbZT
T

bb

b
T
T

b
A

c

acac
ηταη

η

ηταηητ
∆Ω

−∆+














+∆

+∆
Ω

Ω
+














+∆−=∆∆          (3.104) 

 

where cba and ΩΩΩ ,,  are functions of the critical compressibility factor cZ  (Eq. (3.25) - 

Eq. (3.27)), and Ω  

 

22 6 ccbb Ω+ΩΩ+Ω=Ω              (3.105) 

 

The definition of )(Tα  can be found in Eq. (3.28) and Eq. (3.29). Parameters b1, b2 and b3 in 

Eq. (3.104) and Eq. (3.105) are 
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Remember that 0

~

u  in Eq. (3.101) with Patel-Teja equation of state is 
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and  
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               (3.108) 

 

Kiselev (1998) used the modified Patel-Teja cubic equation of state (Patel and Teja, 1982) to 

compare with experimental data for pure CO2 , water, and refrigerants R32 and R125 in the 

one- and two-phase regions. He showed that the crossover Patel-Teja equation of state yields 

a much better representation of the thermodynamic properties of pure fluids, especially in the 

critical region and for vapour-liquid equilibrium, than the original Patel-Teja equation of 

state. 

 

Kiselev and Ely (1999) also developed a crossover modification of the statistical associating 

fluid theory equation of state for macromolecular chain fluids. The crossover statistical 

associating fluid theory equation of state has the same form as the cubic one of Eq. (3.103), 

but )(0

~

Tp  and 
~

A∆  have the different forms because of different classical equation of state,  

),()(0
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c
c VTp

RT
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Tp =               (3.109) 

and 
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where rA
~

is the dimensionless residual part of the Helmholtz energy.  



 99 

 

 Kiselev and Ely (1999) compared the crossover statistical associating fluid theory and 

original equation of state with experimental single -phase data for n-triacontane and n-

tetracontane. The results show that the crossover statistical associating fluid theory equation 

of state reproduces the saturated pressure data in the entire temperature range from the triple 

point to the critical temperature with an average absolute deviation of about 3.8%, the 

saturated liquid densities with an average absolute deviation of about 1.5%, the saturated 

vapour densities with an average absolute deviation of about 3.4%, and gives a much be tter 

representation  of the experimental values of pressure and the liquid density in the critical 

region.  

 

Wyczalkowska et al. (1999) also developed a global crossover equation of state to show how 

the density fluctuations affect all thermodynamic properties more and more significantly 

when the fluid approaches the critical point. 
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