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max Jh,(p,l,O ]<CWexp(-W). 

Hence problems (16) can be solved uniquely and their solutions satisfy the inequalities 

mar ]llt!/]<C(Oexp(-vp). P". i=O.l.... 

5. ~0 estimate the remaining term we introduce the notation y-U.=e., where L'. is the 

partial sum of series (13). For &. we obtain 

1r*A,1"=~&..+a&.+r[F(r,t,Un~e.,-~(r,f,a.)]+ f(r,f)+~F(r,r,U,)-p'~.LI.+~U.+aU. , 1 
E.(r,t) lao=O. ~"(r,r)=~~"(r.trzn). 

Considering (15) and (16), and also that 
* " 

F(r, 4 U,+k.) -F(r, 4 U.)-En j- $ F(r, f, U.+OE.)de, 
0 

we have 

whence, according to Theorem 2, it is easy to obtain the required estimate: Il&,ll=O(~"+') for 

fairly small c. 
Thus the following theorem is proved: 

Theorem 3. If the functions f(r,t) and F(r.f,y) satisfy conditions (12), then when gtn/L 

a unique k-periodic solution of problem (l), (2) exists and series /13/ is an asymptotic 
expansion of this solution with respect to the parameter p. 

Remark. The results obained also hold for the set of equations 

$A,r =~l+Ai+pF(r.1.1)+i(r.t). 

where .-.f,F are vectors and A is a matrix with eigen values which have R&=-O 

1. 

2. 

3. 
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1. A 

ON A LAMINAR MIXING LAYER AT THE BOUNDARY BETWEEN TWO FLOWS* 

V.N. SANOKHIN 

The distribution of fluid velocities in a laminar mixing layer at the 

boundary between two flows is described by a system of Prandtl equations 
with certain boundary conditions. The existence and uniqueness theorems 
for solving a boundary value problem which describes the laminar mixing 
layer are established. 

stationary layer of the mixing of two flows is described by the system of equations 

"u,+cu,=W,,--pX, u,+c,=o (1) 

Translated by H.Z. 

in the domain D=(Ocz<X,-m<yC+m} with the conditions 

U(0, Y)=e(Y). L’(r. 0) =o, u(.?y)+U*(z) as I’-. 

u(+, y)-U?(z) as y- --. 

(2a) 

(2b) 

l Zh.vychisl.Mat.mat.Fis.,25,4,614-617,198s 
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Here u(r,u) and V(Z.9) are the components of the fluid velocity, uo(r), U,(~j>O? Liz(z)>0 are 
known functions, and v=-0. The Bernoulli equation is ~'~*(z)+z~(~)=const. i=l.Z. In bounda_T-layer 
theory, the pressure across the mixing layer does not vary and therefore U,'(~)--CI?~(z)=const. 
The condition v(z,O)-0 is obtained assuming that y-0 is a dividing streamline. 

We shall assume that u,(y)>O, 110(y)-U,(O) as b-m, and uO(y)+U,(0) as y--SC; the function 

P.(l) is continuously differentiable, and uO(y), up'(y), uO"(y) are bounded for -=<y<+= and 
satisfy Hijlder's condition. 

The following theorem expresses the main finding of the present paper. 

Theorem 1. Under the above assumptions, for a certain X there exists in domain D a 
solution U, v of problem (lj, (2), which possesses the following properties: u(z,y) is 
continuous and bounded in D,u>O,u, and uIY are continuous and bounded in D, and U* and c‘" 
are continuous and bounded on any compact set in II. If luo'(y)I~~,erp(-kzly() as IyI-=. and 
k,, k+O are constants, then uI and uI are bounded in D. If dp/dt<O, then such a solution 
exists in domain D for any finite X. The solution of problem (l), (21, having the above 
properties, is unique. 

Certain auxiliary results discussed below are necessary to prove Theorem 1. 

2. Following /l/, we introduce the independent variables 
+-I, +=~(~.U) 

such that u=a$/dy, U-- ag/a+,~(z,O)-0, and also a new unknown function 

w(z,$)=u~. 
Therefore 

y-j&. 

As a result, system (1) with conditions (2) is reduced to the equation 

Ll~)rvw”d~w/dlp~-dw/d~-2dp/drin the region Q--(OczcX,-=<$c+m) (3) 

with the conditions 

w(O,~P)-~o(rpj* ~(&Ipj+uIz(~j, It-=-. ~(G$j'&~(~j, rt- -=* (4) 
where 

wo(j u.(.)dr) -UP'(Y). 
0 

We shall prove the existence and uniquenessofproblem (3), (4) on which Theorem 1 is 

based. 
Consider Eq.(3j in the domain Ds=(O<r~.Y. -.V<q<S), N>O with the conditions 

w(O* Ipj-%(Ipj~ w(z, N)-U-O(.V) e*p [p(>V)z/l~"(.V)!, (Saj 

tr(z. -N)=w,(-N) esp [r(-s)l/lOO(-lV)!, (5bj 

where r(rD)-v~~“~(0)mn”(Ip)-2p’(0). 
Let us show that as N+mr for a certain X the solutions of problem (3), (5) converge 

to the solution of (3), (4). 

Lemma 1. There exists X suchthatinthe regionD,forthe solution w~_(z.$) ofproblem(3),(5),the 
following inequality holds: 

uI.s(l, *)aCexp(-=j, (6) 

where the constants C and OT are positive and do not depend on N. If dp/dr<K then the 
inequality of the form (6) is satisfied for any finite X. 

Proof. Consider the function 

o(Gyj-cexP(-@, a>0, OcC=c min wO($j. 
0 

By the assumption regarding u*(y), the relationship p(~)/w~($) is bounded for -=<VC+=. We 
choose a so large that -a~p(*)/w~($). Then for sufficiently large CT, sufficiently small X, and 

Z<X we have 

@(O. 1(.)CU~>(O. Y), 0(z, r.V)<Ug(l, *s), (7a) 

L(ID)=aCesp (-ar)alZdp/drl. (7b) 

The inequality (6) is easily derived from (7) using the principle of the maximum. 

If dp/drcO, then for any X and for z>u we obtain L(Q)a2dp/dz from which (6) can also be 
derived. 

Lemma 2. A solution of problem (3j, (5) exists for a certain x in the domain D.v. If 
dp/dz60, then a solution exists for any finite X. All the derivatives of this solution in (3) 
satisfy Htilder's condition in the closed domain i&. In domain Dn Eq. (3) can be differentiated 
once with respect to z, and twice with respect to $. 

Proof. If a solution of problem (3j, (5) exists then for it an inequality of the form 

(6) is satisfied. Since the function p(t) is bounded, U~.,(~,*j5Co>0 uniformly in N. let us 

modify ~c.~';I for values of wn<CO so that it becomes a smooth positive function. Then Eq.(3j 

will be a quasilinear parabolic equation in region DA-. and, by Theorem 5.2 in 12, Sect.5, 

Chapt. VI/, it will have a solution in Hijlder's space IIz+"~'+"'z(Dxj. By Theorem 10 anC 11 in 

/3, Sect.5, Chapt. III/, Eq.(3) can be differentiated inside Ds. The lemma is prove6. 
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Lemma 3. The functions wy are bounded inD,.,uniformly with respect to A-G-. The derivatives 

aw,/aq, au*+/ar, a?ddQ’ are bounded uniformly in Halder's norm. 

Proof. The uniform boundedness from below of the solutions ucN follows from Lemma 1, and 
the boundedness from above follows from the principle of the maximum. By Lemma 3.1 from /2, 
Sect.3, Chapt. VI/, the derivative a&aQ is limited uniformly at the boundary of domain Ds. 

Because of this, aws/dQ are also bounded in domain Dx uniformly with respect to N, since 
z.v-a~l~.v/aQ satisfies the parabolic equation 

From this point onwards 

ah Y 
vwg'~--- + -2.v 

a:>- al, --_--__o 
av 2,,a a$ ar 

the lennna is provedinthe same way as Lemma 7 from /l/. 

Theorem 2. In domain D there exists for a certain X a positive bounded solution of 

problem (3), (4) possessing continuous and bounded derivatives which occur in (3). Ifdpldrdk 
then such a solution exists for any finite X. 

Proof. It follows from Lemmas f-3 that we can choose from the family of solutions (wx) 
a sequence when converges uniformly to any part of domain D together with the derivatives 
oW.,qar, atoN/dQ. aGN/aqz. The limit function w(z,Q) in domain D satisfies equation (3) and the 
condition lu(O.Q)=luO(Q). The boundedness of m(r,Q) and its derivatives follows from Lemmas 1 
and 3. 

The proof that -Cl,*(t) as Q-++-q and that ~-Ulz(r) as Q--m is analogous to that 
given regarding the boundary layer in Theorem 2 in /l/. 

Theorem 3. the solution of problem (3), (4) which has the properties listed in Theorem 

2 is unique. 

Proof. We assume that m,(z, Q) and u)*(z, Q) are two solutions of problem (3), (4) which 
have the properties listed in Theorem 2. For the difference wr-wr=W we have 

azw aw v 
fW,% - - - 

aawr 
+-------w-o 

aQ? al w,‘b-w;f~ aQ’ ’ (8) 

and at the same time W(O.Q)=O,W-0 as Q-+== and as Q---. The coefficient by W in (8) is 

bounded. Passing from W to W in accordance with the formula ii'=Ti'esp (ar),a>O. we obtain 

aw aw v alwr Vl,'b _ -- + 
a*= al ( 

-------a W=O, 
~~"1 + u$* aQz 1 

n-(0. Q)=O. Iv+0 as I$l+-. 

We take Q so large that 

Then, by the principle of the maximum, W can have in domain D neither a positive maximum nor 

a negative minimum. Therefore, TV-0 in D, that is W-0 and u,-~~.The theorem is proved. 
Theorem 1 is a corollary of Theorems 2 and 3. The proof of this fact is similar to the 

proof of Lemma 1 in /l/. 
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