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Overview

• Phases of Experimental Measurement

• Types of Errors

• Measurement chain

• Estimating the true value of a measured quantity

• Estimating uncertainties
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Phases of an Experiment

1. Planning

2. Design

3. Fabrication

4. Shakedown

5. Data collection and analysis

6. Reporting

Uncertainty analysis is very useful in the Design phase. It should be considered mandatory

in the Data collection and analysis phase.

The discussion of uncertainty analysis in these notes is focused on the data collection and

analysis phase.
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Start with the Truth

• Goal is to experimentally measure a physical quantity

• The true value of the quantity is a concept. In almost all cases, the true value cannot

be measured.

• The error in a measurement is the difference between the true value and the value

reported as a result of a measurement. If x is the quantity of interest

Error = xmeasured − xtrue

• A claim of numerical Accuracy establishes an upper bound on the error.

x is accurate to
within 5 percent

=⇒
Maximum expected value of

|xmeasured − xtrue| is 0.05|xtrue|

• A numerical value of Uncertainty is an estimate of the error. The uncertainty

quantifies the expected accuracy, but it is not a guarantee of accuracy.
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Role of the True Value

The true value of an object being measured is rarely ever known.

1. Identifying the true value needed by an end user is critical. What are we trying to

measure?

2. The true value is often a concept that is very hard (or impossible) to measure.

Moffat [3] uses the example of average surface temperature as a true value that is needed

for defining the heat transfer coefficient. Measurement of an average surface temperature

is impossible because of the huge number of sensors that would be needed.

• A large number of sensors would cause a large disturbance to the system.

• True surface temperature must be area-weighted. For convection the appropriate

area-weighting is (1/A)
R

T dA. For radiation the appropriate area-weighting isˆ
(1/A)

R
T 4 dA

˜1/4

So even the same apparatus could require two (or more) true values to define the same

concept.
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Examining Errors

Our Goal:

Obtain an estimate of the uncertainty in measured results

The Plan:

1. Classify errors

2. Identify sources of errors

3. Remove errors we can correct

4. Develop a procedure for computing uncertainty

5. Demonstrate how to apply these methods to flow rate measurement.

References:

For additional information on uncertainty analysis and errors measurements

see [1, 3, 2, 4, 5] The following lecture notes are primarily based on Moffat [3].
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Classifying Errors (1)

Ideal Distinction: bias versus random errors

Bias error is a systematic inaccuracy caused by a mechanism that we can (ideally)

control. We can adjust measurements to account for bias errors.

Random error is a non-repeatable inaccuracy caused by an unknown or an

uncontrollable influence. Random errors establish the limits on the precision of a

measurement.
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Classifying Errors (2)

Moffat [3, § 2.2.1] makes a more practical distinction of three types of errors.

• Fixed errors

• Random errors

• Variable but deterministic errors

In Moffat’s taxonomy, fixed errors and variable but deterministic errors are bias errors.
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Fixed Error

All repeatable errors are fixed errors. A fixed error is the same for each nominal operating

point of the system

Sources of fixed error

• sensor calibration

• fixed disturbance to system

Examples

• A pressure gauge that always reads 2 psi high at 100 psi.

• Heat flow along thermocouple leads when measuring the temperature of an object

• Effect of probe blockage on flow field downstream of the probe
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Random Error

Random errors have different magnitude during subsequent measurements of the same

quantity. For well behaved systems, random errors in a measurement cause a cluster of

observed values.

• We will assume that random errors are normally distributed. This is reasonable for

large sample sizes and truly random errors

µ µ + 2σµ – 2σ

95.5 percent of all observations
fall within ± 2σ

2.25 percent
2.25 percent

• A large sample (30 or more observations) of the system at the same operating point

tends toward a normal (Gaussian) distribution of values about some mean value if the

population is Gaussian.
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Variable but Deterministic Error (1)

Some errors that appear to be random can be caused by faulty measurement techniques

(e.g. aliasing) or the errors may be variable but deterministic.

• Errors change even though the system is at the same nominal operating point

• Errors may not be recognized as deterministic: variations between tests, or test

conditions, may seem random.

• Cause of these errors are initially hidden from the experimenter
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Variable but Deterministic Error (2)

Examples:

• Variations in room air conditions such as temperature and air circulation patterns

. set-back thermostats

. solar radiation through windows

. presence of people in the room

. windows open to outside

• Changes in sensors

. Thermal drift of sensors

. Use of a new batch of thermocouple wire with different calibration

. Cold working of thermocouple wire

• Changes in consumable materials or equipment used in experiments

. Leakage or chemical degradation of working fluid

. Mechanical wear or misalignment of positioning equipment
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Mundisturbed Mavailable Machieved Mobs + δM Mcorrected

Adapted from R.J. Moffat,  Chapter 2, in Thermal Measurements 
in Electronic Cooling, Kaveh Azar, ed., 1997, CRC Press, Boca Raton, FL.

Undisturbed 
Value

Available 
Value

Achieved 
Value

Observed 
Value

Corrected 
Value

System 
Disturbance

System/Sensor 
Interaction

Calibration 
Errors

Centering 
Corrections

Usys/sensor Uinstrument Ucentering
Usample

 Measurement Chain
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Values of Measurand Along the Chain (1)

Mundisturbed ... Mcorrected

1. Undisturbed value: The value of quantity to be measured in a system with no

sensors.

Example: Temperature at point (x, y, z) is T (x, y, z).

2. Available value: The value of quantity to be measured after the sensor has been

placed in the system.

Example: Temperature at point (x, y, z) after sensor is been inserted is

TA(x, y, z) 6= T (x, y, z).

3. Achieved value: The value of quantity to be measured actually experienced by the

sensor.

Example: Temperature at the junction of a thermocouple at point (x, y, z) is

Tj(x, y, z) 6= TA(x, y, z).
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Values of Measurand Along the Chain (2)

4. Observed value: The value indicated by the instrumentation.

Example: EMF produced by thermocouple with temperature at Tj(x, y, z) is

Ej(x, y, z). The temperature indicated by the thermocouple is Ti = f(Ej), and

Ti 6= Tj(x, y, z) 6= TA(x, y, z) 6= T (x, y, z).

5. Corrected value: The value obtained after making centering corrections to the

observed value.

Example: Tc = Ti + ∆T where ∆T is a centering correction to account primarily

for the difference Tj − TA. We design a model for the centering correction so that Tc

is closer to T than Ti.
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Contributions to Uncertainty of Measurand (1)

UcenteringUsample ...

1. Sampling Uncertainty

The undisturbed value is one of a large population of possible values for the

undisturbed quantity of interest.

Sampling Uncertainty is due to random errors.

2. System Sensor Uncertainty

• System disturbance changes the state of the system

• The sensor experiences interactions with the environment, e.g., radiation and

conduction effects on thermocouple measurement.

System Sensor Uncertainty is due to a fixed error.
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Contributions to Uncertainty of Measurand (2)

3. Instrument Uncertainties
Estimates of instrumentation uncertainties are readily made, though not all such

estimates reflect the true uncertainty. Moffat claims that with modern

instrumentation, the instrument uncertainties are often the least significant.

Instrument Uncertainties are due to random errors for a properly calibrated

instrument.

4. Centering Uncertainties
Each centering correction has an associated uncertainty. These must be included in a

final estimate of the uncertainty in the value of the measured quantity.

Centering Uncertainties are due to fixed errors. We accept these fixed errors after we

have done our best to minimize them.
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Estimating Uncertainties (1)

1. System Disturbance Errors: The presence of a sensor changes the system

• Can be estimated, but not with any certainty

• Use estimates of disturbance errors to design the experiment, and to inform the

installation of sensors in the experimental apparatus. For example, locate a probe

to minimize flow blockage, or leakage.

• Goal is to design, build and instrument the system to minimize system disturbance

errors.

2. System/Sensor Interaction Errors: System phenomena alter value sensed by the

sensor.

Example: Radiation from the walls of a duct alter the temperature of an exposed

thermocouple junction used to measure the temperature of a flowing gas.

• Should be estimated using engineering models of heat transfer and fluid flow

• Uncertainty in the estimate of this error needs to be included in final uncertainty

estimate for the quantity of interest.
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Estimating Uncertainties (2)

3. Instrumentation Errors:

• Use manufacturer’s data or traceable calibration.

• Best solution is to perform simple benchmark experiments to measure the

instrument errors in situ.

• See Figure 4, page 61 in the article by Moffat [3] for a detailed worksheet used to

estimate the instrumentation error. Note that this worksheet does not included

system disturbance, system/sensor interactions, or conceptual errors.

4. Uncertainties in Centering Corrections:

• Report corrected values!

• Uncertainty in the correction should be smaller than the correction itself.
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Estimating Uncertainties (3)

5. Conceptual Errors:

• Can be very large

• Not subjected to laws of physics

• Minimize by using good practice

. Check units.

. Use shakedown experiments to compare results to established benchmarks.

. Use redundant measurements, e.g. energy balances on both sides of an heat

exchanger.

. Publish results with sufficient information so that others can replicate your

results.

6. Overall Errors

• Combine with methods presented below

• Use root-mean-squared procedure.

Uncertainty Estimation and Calculation page 20



Example of Centering Correction (1)

Note: Example: Measurement of fluid temperature in a duct.

Insulated duct wall

Tamb

Tw
Tf Tj

The junction exchanges heat with its surroundings by conduction, convection and

radiation. Is Tj = Tf?
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Example of Centering Correction (2)

Qcond =
keffAeff

L
(Tj − Tamb) Heat loss by conduction from junction to ambient

Qrad = εjσAs(T
4
j − T 4

w) Heat loss by radiation from junction to walls

Qconv = hAs(Tf − Tj) Heat gain by convection from fluid to junction

Qconv

Qcond

Qrad Tw

Tamb

Tj

Tf
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Example of Centering Correction (3)

Steady state energy balance: Heat gain = heat loss

Qconv = Qcond + Qrad

For simplicity we will neglect radiation. This is a good assumption if Tw ≈ Tj.

Qconv = Qcond =⇒
keffAeff

L
(Tj − Tamb) = hAs(Tf − Tj)

Solve for Tj

Tj =

Tf +
keffAeff

LhAs

Tamb

1 +
keffAeff

LhAs

If conductivity or cross-section of the probe is large, then Tj is closer to Tamb than to Tf .
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Example of Centering Correction (4)

Let Tamb = 20 ◦C and Tf = 180 ◦C.

Compute Tj for a range of r where

r =
keffAeff

LhAs

.

Plot shows Tj = f(r) when radiation is

neglected.
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Example of Centering Correction (5)

Use the estimate of the conduction loss to computed a corrected value of Tf from the

measured value of Tj.

Tf,corrected = Tj +
keffAeff

LhAs

(Tj − Tamb)

In words:

Tj is the observed value of the sensor.

Tf,corrected is the estimate of the true value of the fluid temperature after

correcting the observed value for the effect of heat loss by conduction in the probe.
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Computing Uncertainty of Measurement

1. Definitions

2. Root-sum-squared Computation

3. Numerical approximation to sensitivities

4. Sequential perturbation method
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Definitions

1. Let x be the value of a measured quantity.

2. Let ux be the uncertainty associated with x.

3. When we write

x = xmeasured ± ux (20:1)

we mean that

• x is the best estimate of the measure value,

• xmeasured is the value of x obtained by correction (centering) of the measured

value of x,

• ux is the uncertainty at stated odds. Usually 20:1 odds
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Meaning of 20:1 odds

• In general, if x is a normally distributed random variable, there is a 95 percent (95.5

percent, to be more precise) probability that any one sample of x will lie within ± 2σ

of the mean of the population of all possible values of x. Thus, 19 out of 20 samples

(19/20 = 0.95) from the population will lie within ± 2σ. Or only 1 out of 20 samples

will lie outside of the ± 2σ band about the mean.

• When we say that x = xmeasured ± ux at 20:1 odds, we mean that upon repeating

our experiment to measure x twenty times, we expect only one sample of x to deviate

from our best estimate by more than ux.

Therefore ux is not an absolute upper bound on the error.

Uncertainty Estimation and Calculation page 28



Computational Procedures (1)

There are two ways to compute the numerical value of the uncertainty. Both methods are

based on the Root-Sum-Squared estimate of the error.

1. Analytical method

2. Sequential perturbation
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Computational Procedures (1)

The analytical method involves deriving a single formula for the uncertainty in a

measurement.

• Straightforward computation

• Becomes unwieldy and eventually impractical as the data reduction procedure

becomes increasingly complex.

The sequential perturbation technique is easy to implement when the data reduction

procedure is automated via a computer program.

• Uncertainty estimate is approximate, not exact as in the analytical method.

• Is simple to implement, and allows for evolution of the model underlying the data

reduction.
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Root-Sum-Squared (RSS) Computation (1)

Begin with the basic definition of the Root-Sum-Squared uncertainty.

The data reduction computation is represented by

R = f(x1, x2, . . . , xn)

where R is the final, measured result, and xi are measured quantities. Let ui be the

uncertainty in xi so that

xi = xmeasured,i ± ui

This is a slight change in notation to avoid the double subscript uxi
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Root-Sum-Squared (RSS) Computation (2)

The uncertainty in R due to the uncertainties in each xi is

uR =

"„
∂R

∂x1

u1

«2

+

„
∂R

∂x2

u2

«2

+ . . . +

„
∂R

∂xn

un

«2
#1/2

(1)

For simple data reduction steps its is possible to compute the derivatives analytically. For

even modestly complicated data reduction processes, it makes more sense to use a

computer program to perform the data reduction and uncertainty calculation
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Example of RSS Computation (1)

Nozzle flow equation

Q = CdAnY

s
2∆p

ρ(1− β4)
(2)

Cd is the nozzle discharge coefficient,

An is the area of the nozzle exit, An = (π/4)d2
n

dn is the throat diameter,

∆p is the measured pressure drop across the nozzle,

Y is the expansion factor, which accounts for the

compressibility of the fluid.

ρ is the fluid density upstream of the nozzle

β = dn/D is the contraction ratio,

D is the diameter of the upstream duct.
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Example of RSS Computation (2)

The nozzles are built to ASME/ANSI specification, but are not individually calibrated.

Use the generic equation for the discharge coefficient

Cd = 0.9986−
7.006
√

Ren

+
134.6

Ren

(3)

Ren =
Vndn

ν
=

4Q

πdnν
(4)

Y =

"
γ

γ − 1
α

2/γ1− α(γ−1)/γ

1− α

#1/2 "
1− β4

1− β4α2/γ

#1/2

(5)
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Example of RSS Computation (3)

Vn = Q/An is the average velocity in the nozzle throat,

ρ is the fluid density,

µ is the fluid viscosity evaluated at the

pressure and temperature upstream of the

nozzle.

α =
p−∆p

p
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Example of RSS Computation (4)

Focus on Equation (2)

Q = CdAnY

s
2∆p

ρ(1− β4)
(2)

To begin, assume that Cd, An, Y , and β are known.

Thus, we are (initially) considering just the uncertainty in Q due to the uncertainty in ∆p

and ρ.

uQ =

"„
∂Q

∂(∆p)
u∆p

«2

+

„
∂Q

∂ρ
uρ

«2
#1/2

(6)
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Example of RSS Computation (5)

Compute:

∂Q

∂(∆p)
=

CdAnY
√

2p
ρ(1− β4)

1

2
(∆p)

−1/2
(7)

∂Q

∂ρ
= CdAnY

s
2∆p

(1− β4)

„
−

1

2

«
ρ
−3/2

(8)

Substitute Equations (7) and (8) into Equation (6) and simplify to get

uQ

Q
=

"„
u∆p

2∆p

«2

+

„
uρ

2ρ

«2
#1/2

(9)

Uncertainty Estimation and Calculation page 37



Example of RSS Computation (6)

Problems:

• uρ depends on measured p and T . If we include the effects of uncertainties in p and

T on the value of uρ, then we should also include its effect on the computation of

Cd = f(Ren).

• What about uncertainty in dn? This affects the values of Cd and An.

• Don’t forget uncertainty in Y , which is determined by the values of p and ∆p.

• Furthermore, we have only considered uncertainties in the property values p, T , and

ρ. What about the uncertainty in the sensors used to measure p, T , and ρ?

In short: Equation (9) is an incomplete model of uQ.
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Assessment of RSS Computation

• Analytical technique is simple in concept, but cumbersome to implement for

measurement results (R) that depend on many individual measurements (xi).

• Random errors can not be easily included in individual measurements because random

errors from sensor readings need to be combined with calibration errors.

• Including uncertainty in sensors requires impractical level of analytical detail.

• The formula for the uncertainty estimates must be re-derived if any step in the

measurement chain changes.

• Derivation of the uncertainty formula will be incorrect if there are any errors in the

algebra.

Fortunately there is an easier way!
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Perturbation Method for Computing Uncertainties (1)

As a consequence of the Fundamental Theorem of Calculus

∂R

∂xi

= lim
∆xi→0

»
R(xi + ∆xi)− R(xi)

∆xi

–
≈

R(xi + δxi)− R(xi)

δxi

where δxi is a finite perturbation in the measured value of xi.

Now, if we use δxi ≈ ui, then»
∂R

∂xi

δxi

–2

≈
»

R(xi + δxi)− R(xi)

δxi

ui

–2

≈ [R(xi + ui)− R(xi)]
2

In words: The uncertainty in R due to the uncertainty in xi can be estimated by

perturbing the data reduction formula by ui.
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Perturbation Method for Computing Uncertainties (2)

Equation (1) becomes

uR =
h
D2

1 +D2
2 + . . . +D2

n

i1/2

(10)

where

D1 = R(x1 + u1, x2, . . . , xn)− R(x1, x2, . . . , xn)

D2 = R(x1, x2 + u2, . . . , xn)− R(x1, x2, . . . , xn)

...

Dn = R(x1, x2, . . . , xn + un)− R(x1, x2, . . . , xn)

The uncertainty in R is estimated by sequentially perturbing the input values xi by their

respective uncertainty.
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Perturbation Method for Computing Uncertainties (3)

Equation (10)

uR =
h
D2

1 +D2
2 + . . . +D2

n

i1/2

(10)

is valid for small perturbations, ui. If R(x1, x2, . . . , xn) is strongly nonlinear, or if any

of the ui are large, then the uR computed from Equation (10) may not be a good

approximation to the uR computed from Equation (1).
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Implementation of the Perturbation Method

The preceding idea is best implemented in a computer program.

1. Write a general subroutine to evaluate R(x1, x2, . . . , xn), where xi are the

measured inputs.

2. Obtain estimates of ui:

• Contribution from calibration errors

• Contribution from random variation of inputs: use statistical sampling

3. Call the general subroutine once to get the nominal value of R(x1, x2, . . . , xn)

4. For each xi compute

Di = R(x1, x2, . . . , xi + ui, . . . , xn)− R(x1, x2, . . . , xi, . . . , xn)

5. Combine contributions to the uncertainty with

uR =
h
D2

1 +D2
2 + . . . +D2

n

i1/2
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Example: Nozzle Flow Rate Calculation (1)

Use sequential perturbation to compute the uncertainty of the flow through a nozzle.

Recall Equation (2).

Q = CdAnY

s
2∆p

ρ(1− β4)
(2)

Rewrite as

Q = f(dn, D, pn, T1, p1) (11)

Recall that β = dn/D, where D is the diameter of the upstream plenum.

Consider the influence of individual uncertainties udn, uD, u∆p, uT1
, up1

on the value of

Q.

Let Qnom be the nominal value of the flow rate, i.e., Qnom is the flow rate for the

measured set of (dn, D, ∆p, T1, p1) values.
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Example: Nozzle Flow Rate Calculation (2)

Sequential perturbation:

Ddn = f(dn + udn, D, ∆p, T1, p1)−Qnom

DD = f(dn, D + uD, ∆pn, T1, p1)−Qnom

Dpn = f(dn, D, ∆p + u∆p, T1, p1)−Qnom

DT1
= f(dn, D, ∆p, T1 + uT1

, p1)−Qnom

Dp1
= f(dn, D, ∆p, T1, p1 + up1

)−Qnom

Then

uQ =
h
(Ddn)

2
+ (DD)

2
+ (D∆p)

2
+ (DT1

)
2
+ (Dp1

)
2
i1/2

The calculations are demonstrated in the demoUncertainty m-file and the

flowBenchUncertainty Excel spreadsheet.
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Combining Uncertainties

Up to this point we’ve considered the effect of a given uncertainty on a computed result.

How do we obtain the estimate of the uncertainty in a primary measured value?

In particular, how do we account for the uncertainty in a single measured value when the

following error sources contribute to the uncertainty?

1. Random errors, uxrand

2. Instrumentation errors, uxinst

3. Calibration errors, uxcal

Assuming that the individual contributions are uncorrelated:

ux =
q

u2
xrand

+ u2
xinst

+ u2
xcal

Uncertainty Estimation and Calculation page 46



Example: T-couple Measurement with Hand-Held Multimeter (1)

The smallest resolution is 0.1 mV, so the uncertainty due to the instrument resolution is

±0.05mV. This does not mean that the accuracy of the instrument is ±0.05mV.

At 20 ◦C, the EMF of an ice-point referenced, type T thermocouple is 0.7896 mV

EMF + uV = 0.7896 + 0.05 = 0.8396 mV

=⇒ T = 21.2
◦
C

EMF− uV = 0.7896− 0.05 = 0.7396 mV

=⇒ T = 18.8
◦
C

Therefore, the uncertainty in temperature due to the resolution of the instrumentation is

uTinst
= ±

21.2− 18.8

2
= ± 1.2

◦
C
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Example: T-couple Measurement with Hand-Held Multimeter (2)

Summary of uncertainties

uTrand
= 0 ◦C No observed fluctuations

uTinst
= ±1.2 ◦C See calculation above

uTcal
= 0.1 ◦C Maximum error indicated on the thermocouple

spool: 0.2 ◦F at 200 ◦F

Combining the uncertainties gives

uT =
p

1.22 + 0.12 = 1.20
◦
C

which is the overall uncertainty in the temperature measurement for an ice-point

referenced thermocouple read with the hand-held multimeter with voltage resolution of

±0.05mV.
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Example: T-couple Measurement with Hand-Held Multimeter (3)

Summary of uncertainties (repeat from previous slide)

uTrand
= 0 ◦C No observed fluctuations

uTinst
= ±1.2 ◦C See calculation above

uTcal
= 0.1 ◦C Maximum error indicated on the thermocouple

spool: 0.2 ◦F at 200 ◦F

For the assumed values in this example, the measurement error due to the inherent

properties of the thermocouple wire are negligible.

The uncertainty in the measurement (for this example!) is due to the limited number of

significant digits available on the electronic measurement instrument.
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Example: T-couple Measurement with Scanning Multimeter (1)

Repeat the thermocouple measurement with an AgilentTM data acquisition and switch

unit.

The manufacturer’s claimed accuracy is ±0.005µV with one hour warm up and 6 and

1/2 digit readings. Although our readings were taken with 5 and 1/2 digit setting, we can

assume that the error in voltage measurement introduced by this data acquisition system

is zero.

Therefore, for the Agilent multimeter

uTinst
= 0

Note: The statement uTinst
= 0 means that compared to other sources of

uncertainty, the uncertainties due to the electrical calibration and precision of

the Agilent multimeter are negligible.
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Example: T-couple Measurement with Scanning Multimeter (2)

Suppose that as the result of 30 samples of an ice-point referenced thermocouple, the

reading is Ē = 0.831mV and σE = 3.06µV. Then the uncertainty due to the

fluctuations in DC voltage alone is

uTrand
= G(0.831 + 2(0.0036) mV)−G(0.831 mV)

= 0.178
◦
C

where G(E) evaluates the calibration polynomial for the thermocouple. The factor of

two multiplying σE term is necessary to be consistent with the 95 percent confidence

interval (20:1 odds).

The preceding calculation can be done with the Ttemp Matlab function:

>> uTrand = Ttemp( (0.831 + 2*(0.0036))*1e-3 ) - Ttemp(0.831e-3)
uTrand =

0.1782
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Example: T-couple Measurement with Scanning Multimeter (3)

The calibration error for the thermocouple wire is ±0.1 ◦C.

Finally, we combine the uncertainties due to random fluctuations in the signal, and the

uncertainty due to the wire calibration.

uT =
q

u2
Trand

+ u2
Tcal

(uTinst
= 0)

=
p

0.1782 + 0.12 = 0.20
◦
C

This is the overall uncertainty in the temperature measurement for an ice-point referenced

thermocouple read with the Agilent multimeter.

The uncertainty in the temperature measurement with the Agilent multimeter is an order

of magnitude less than the uncertainty in the temperature measurement with the

hand-held multimeter. This result is primarily due to the much higher resolution of the

Agilent multimeter. Note that the calculations of uncertainty assumed that there was no

calibration errors in these instruments.
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Example: T-couple Measurement with Scanning Multimeter (4)

What if the thermocouple is referenced to the zone box temperature and the temperature

of the zone box is measured with a thermistor?

Now, two streams of uncertainties contribute

• Calibration, instrument, and random uncertainty in the thermistor measurement.

• Calibration, instrument, and random uncertainty in the thermocouple measurement.
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Example: T-couple Measurement with Scanning Multimeter (5)

Suppose we have the following data taken when the system is assumed to be at steady

state

Ē = −1.15× 10−5 V average of 30 readings of the thermocouple

referenced to the zone box

σE = 2.97× 10−6 V standard deviation of 30 thermocouple readings

R̄ = 10815.3 Ω average of 30 readings of the thermistor in the

zone box

σR = 4.0 Ω standard deviation of 30 thermistor readings
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Example: T-couple Measurement with Scanning Multimeter (6)

Assume that the instrument error is zero (negligible) for both the DC voltage reading and

the resistance reading. This is reasonable for the Agilent multimeter. Recall that the

resistance reading is a 4-wire measurement that eliminates the resistance of the lead wire.
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Example: T-couple Measurement with Scanning Multimeter (7)

The calibration equation for the temperature reading is of the form

T = f(E, R)

where E is the EMF of the thermocouple, and R is the resistance of the thermistor.

Using the sequential perturbation technique, and assuming uTinst
= 0 for both the

voltage and resistance measurements, the uncertainty in the temperature reading is

uT =
q

u2
Trand,E

+ u2
Trand,R

+ u2
Tcal

where

uTrand,E
= f(E + 2σE, R)− f(E, R)

uTrand,R
= f(E, R + 2σR)− f(E, R)

The factor of 2 in the perturbation gives an uncertainty estimate with 95 percent

confidence intervals (20:1 odds).
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Example: T-couple Measurement with Scanning Multimeter (8)

In Matlab the calculations are

>> E = -1.15e-5; sigE = 2.97e-6; R = 10815.3; sigR = 4;
>> Tnom = Ttemp(E,ThermistorT(R))
Tnom =

22.7939

>> uTrandE = Ttemp(E+2*sigE,ThermistorT(R)) - Tnom
uTrandE =

0.1465

>> uTrandR = Ttemp(E,ThermistorT(R+2*sigR)) - Tnom
uTrandR =

-0.0181

>> uTcal = 0.1;
>> uT = sqrt(uTrandE^2 + uTrandR^2 + uTcal^2)
uT =

0.1783
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Example: T-couple Measurement with Scanning Multimeter (9)

In Matlab the calculations give uT = 0.178 ◦C.

From this calculation we conclude that the uncertainty in the temperature measurement is

±0.2 ◦C at 20:1 odds.

Note that in the preceding calculations we have neglected errors in the curve fits to the

calibration data.
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Summary

1. Identify contributions to measurement errors

• Bias errors: correct with centering models

• Uncontrollable errors: report uncertainty

2. Estimate uncertainty in measured values due to

• Instrumentation errors

• Calibration errors

• Random errors – use statistical sampling

3. Compute uncertainty in the result with sequential perturbation method

• Develop data reduction formulas including centering corrections

• Uncertainty in raw measurements (e.g. EMF) are due to random fluctuations and

possibly instrumentation uncertainties

• Uncertainty in converted values (e.g. temperature) are due to uncertainties in the

raw measurements and due to uncertainties in calibration formulas.

• The sequential perturbation method accounts for the propagation of uncertainties

in raw measurements and converted values. This includes uncertainties introduced

by the measured values used in any centering corrections.
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