## Combinatorics and Graph Theory I, Spring 2019, Sheet 3

Each exercise sheet gives 10 points. These points are given for:

- correctness of answers,
- conciseness of arguments, and
- readability of write-ups.

To pass the tutorial and get your credits you need a total of at least $60 \%$ of all points from exercise sheets, and $60 \%$ of all points from the two quizzes (each gives 10 points).

Please hand in your solution to this sheet at the beginning of the next tutorial on Thursday, March 14th.

## Exercise 3.1

Sketch the network whose vertices are $s, a, b, c, d, t$; and whose arcs and capacities are

$$
\begin{array}{c|cccccccc}
(x, y): & (s, a) & (s, b) & (a, b) & (a, c) & (b, d) & (d, c) & (c, t) & (d, t) \\
c(x, y): & 5 & 3 & 3 & 3 & 5 & 2 & 6 & 2
\end{array}
$$

Find a flow with value 7 and a cut with capacity 7 . What is the value of the maximum flow, and why?

## Exercise 3.2

Let $\vec{G}=(V ; \vec{E})$ be a digraph with source $s$ and $\operatorname{sink} t$ and suppose $\phi: \vec{E} \rightarrow \mathbb{R}$ be a function, not necessarily a flow.
(a) Show that

$$
\sum_{x \in V} \phi(\{x\}, V \backslash\{x\})=\sum_{x \in V} \phi(V \backslash\{x\},\{x\})
$$

(b) Deduce from (a) that if $\phi$ is a flow then the net flow out of $s$ is equal to the net flow into $t$ :

$$
\phi(\{s\}, V \backslash\{s\})-\phi(V \backslash\{s\},\{s\})=\phi(V \backslash\{t\},\{t\})-\phi(\{t\}, V \backslash\{t\})
$$

## Exercise 3.3

Suppose $S \subseteq \vec{E}$ is a set of edges after whose deletion there is no flow from $s$ to $t$ with strictly positive value. Prove that $S$ contains a cut separating $s$ from $t$, i.e., there is $X \subset V$ with $s \in X$ and $t \notin X$ such that $\vec{E}(X, V \backslash X) \subset S$.

## Exercise 3.4

Let $f: \vec{E} \rightarrow \mathbb{R}^{+}$be a flow on a digraph $\vec{G}=(V ; \vec{E})$ with source $s$, $\operatorname{sink} t$ and capacity function $c: \vec{E} \rightarrow \mathbb{R}^{+}$.
(a) Define the value of the flow $f$.
(b) Suppose that $X \subset V$ contains $s$ but not $t$. Show that the value of $f$ is also equal to

$$
f(X, V \backslash X)-f(V \backslash X, X)
$$

(c) Using (b) and the fact that $0 \leq f(x, y) \leq c(x, y)$ for each $(x, y) \in \vec{E}$, prove that the value of $f$ is at most equal to the capacity of a cut $\vec{E}(X, V \backslash X)$ separating $s$ from $t$.

## Notations and reference

Please refer to Chapter III (Flows, Connectivity and Matching), Section 1 (Flows in Directed Graphs) in Bollobás Modern Graph Theory, 1998 for the relevant material.

In particular, for this exercise sheet, for a digraph $\vec{G}=(V ; \vec{E})$ and a function $\phi: \vec{E} \rightarrow \mathbb{R}$, for $X, Y \subseteq V$, we define

$$
\vec{E}(X, Y):=\{(x, y) \in \vec{E} \mid x \in X \text { and } y \in Y\},
$$

and

$$
\phi(X, Y):=\sum_{x \in X, y \in Y,(x, y) \in \vec{E}} \phi(x, y) .
$$

