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Abstract Air quality of north Indian cities has worsened over
the last few decades which has been posing a great risk to
consequential health-related issues. Ground-based monitoring
of particulate matter smaller than 10 μm (PM10) in Indian
cities has been limited to few selective sites at local hot spots,
and thus, related health studies at regional scale were
constrained. To overcome this issue, we utilized the aerosol
optical depth (AOD) from Moderate Resolution Imaging
Spectroradiometer (MODIS) onboard EOS Terra and Aqua
satellites to estimate the regional PM10 concentration in Agra
City located in the northern part of India. The approach
envisaged the developments of linear, log-linear, and multi-
linear regression models to estimate PM10 using AODMODIS

and in situ measured meteorological parameters by utilizing
the data of years 2010 and 2011. The results indicated that
both hourly and 24-h average PM10 had a weak correlation
with AODMODIS when chosen as the only regressor. However,
hourly PM10 showed better correlation with AODMODIS (R
~0.45) than 24-h average PM10 (R ~0.24). The log-linear
estimation of PM10 utilizing AODMODIS, relative humidity,
wind speed, and atmospheric temperature as regressors had
the highest correlation coefficient (R=0.81) and a minimum

relative standard error as 8.93 %, and thus, it was able to
provide the best estimates of PM10 among all the models
considered in this study. However, the model adequacy checks
suggested the further scope of strengthening of these linear
and log-linear models by adopting some suitable transforma-
tions in them.

Keywords Hourly and 24-h average PM10
. AODMODIS

.

Linear and log-linear regressionmodelling .Meteorological
parameters

Introduction

Outdoor air pollution has beenwidely recognized as one of the
leading factors to the global burden of diseases (Cohen et al.
2005). Particulate matter smaller than 10 μm (PM10) is con-
sidered to be one of the major criteria pollutants to indicate the
air quality (World Health Organization 2006). Recognizing
the importance of this issue, the Central Pollution Control
Board (CPCB) of India under the National Air Quality
Monitoring Program (NAQMP) has been monitoring PM10

across the entire country through a network of 342 ground-
based monitoring stations. These 24-h ground-based measure-
ments are being carried out mostly by high-volume air sam-
plers with a frequency of twice a week. Most of the locations
of ground-based monitoring samplers are limited to urban
areas adjacent to some local hot spots. The data are often
missing at many sites due to operational problems.
Considering the high spatial and temporal variability in aero-
sol concentration in India (Dey and Girolamo 2010), the
existing network is not sufficient to cover the entire country
seamlessly, thereby raising concerns about the applicability of
such data in regional-scale studies. Satellite remote sensing
techniques for estimating the ground level PM10 are now
becoming more and more popular where surface PM10
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monitors are not available and also because of the advantage
of their wide spatial and temporal coverage.

The Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard EOS Terra and Aqua satellites has been
retrieving aerosol properties routinely over land and ocean
including aerosol optical depth (AOD) at 0.55 μm (Remer
et al. 2005). AODMODIS retrievals (level 2 data of collection 5)
are at 10 km by 10 km spatial scales (Levy et al. 2007a,
2007b), whereas ground measurements of PM10 are at point
locations with high temporal resolution. As AOD reflects total
columnar aerosol optical properties, it has been used as an
input parameter in correlative models estimating the PM10

concentration measured at surface level. The correlation be-
tween them is severely influenced by the vertical distribution
of aerosols and the meteorology that impact AOD. Thus, to
estimate PM concentrations simply from AOD would have
large uncertainties. To reduce these uncertainties, the atmo-
spheric boundary layer height and ambient relative humidity
should be introduced into the correlative models.
Furthermore, several meteorological factors are recommended
to be assimilated to exactly depict the ambient impact and the
linear regressive models are, therefore, to be updated with
nonlinear/poly-parameter models to improve the correlation
between AOD and PM concentrations. Thus, the widely used
approach of estimating PM concentration fromAOD is simply
an empirical analysis where in situ PM measurements are
regressed suitably with the corresponding AOD and the other
in situ parameters including the meteorological parameters.
Some recent studies supporting the above developments are
briefly mentioned in the proceeding paragraphs.

Numerous recent studies have suggested the use of regres-
sion models to estimate the ambient particulate matter of
different sizes using satellite-based AOD (Wang and
Christopher 2003; Chu et al. 2003; Lee et al. 2011; Yap and
Hashim 2013). In order to improve the predictive power of
regression models, related parameters such as local meteorol-
ogy and land use information were also used as additional
inputs (Li et al. 2005; Gupta et al. 2006; Gupta and
Christopher 2008, 2009a; Kumar et al. 2007, 2008; Hoff and
Christopher 2009; Liu et al. 2009; Van Donkelaar et al. 2010).
When both AODMODIS and PM10 experienced a highly
skewed distribution, these were transformed into log scales
for regression analysis (Kumar et al. 2008, 2011). In a study
for Jefferson County, Alabama, by Wang and Christopher
(2003), the AOD results from Terra and Aqua satellites were
correlated with both hourly and 24-h averaged PM2.5 (partic-
ulates smaller than 2.5 μm aerodynamic diameter) from seven
locations within 100 km. They found a coefficient of correla-
tion (R) of 0.70 when hourly PM2.5 was linearly related with
AODMODIS for the aggregated data of all the sites, and when
the data were aggregated for daily means of PM2.5, R
increased to 0.98. On the other hand, Justice et al. (2009)
examined the impact of diurnal variation in PM2.5 on R2. It

was found that R2 values from hourly PM2.5 were higher than
those from the daily averages.

Recently, Dey et al. (2012) have utilized the Multi-angle
Imaging SpectroRadiometer (MISR)-retrieved AOD data to
indirectly estimate the annual mean of PM2.5 concentration
over India for the last decade so as to assess the potential
health implications. They have identified the Agra City as a
hot spot for PM2.5 with a mean annual concentration of
88 μg m−3. With regard to the profiles of particulate matter
in and around Agra City, Parmar et al. (2001) and Satsangi
et al. (2007) have reported the mean annual PM10 concentra-
tion as 131 μg/m3 at semi-urban area of Dayalbagh and at St.
Jones College, a heavy traffic site. In the same city, the annual
mean of total suspended particulates was reported as
368.5 μg/m3 near the Taj Mahal (Kulshrestha et al. 1995) in
the range of 173–973 μg/m3 at the industrial area (Khare et al.
1996) and 441.1 μg/m3 at Dayalbagh (Kumar et al. 2007).
These results clearly indicated that PM10 in Agra City has been
well above the Indian standard for 24-h average as 100 μg/m3.
Singh and Sharma (2012) and Pachauri et al. (2013) have
reported the seasonal variations of PM10 concentration in
Agra City with a high value in winter (December–February)
followed by summer and the lowest in monsoon (June to
September). Presently, the air quality of the city is being
monitored hourly by Uttar Pradesh Pollution Control Board
(UPPCB), a state regulatory board of India, with the help of a
single automatic air quality monitoring station (AAQMS).
However, this single site may not be enough to provide the
insight of the space–time variation of hourly PM10 concentra-
tion with a reasonable resolution in and around this historical
city. Therefore, the present study aims to develop a suitable
regression model which could provide reliable estimates of
regional PM10 concentration with the help of the AODMODIS

and coincident in situ measurements of meteorological param-
eters. One of the main implications of such models could be
their applicability in studying the long-term trends of PM10 on
regional basis and the associated health impacts.

Study area, data, and approach

Study area

The present study was focused on Agra City (latitude 27° 12′
12.26″, longitude 78° 00′ 21.03″, and elevation 122.26 m),
where the historic monument “Taj Mahal” is located. The
monitoring station AAQMS has been placed by UPPCB on
the Agra Nagar Nigam Building near Sanjay Palace to mon-
itor the air pollution in the city on long-term basis. This
monitoring station is surrounded by many office buildings
(not high rise) and by moderately green cover. It is about
200 m away from the main road which carries relatively
high-density traffic. The pollution generated from this main
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road traffic is expected to get attenuated before it reaches the
site of the monitoring station. Thus, the particulate level at this
site is mainly influenced by traffic activities on the main road
and diesel generators (DGs) installed in the premises of the
office buildings. There was no other remarkable anthropogen-
ic activity in that area responsible for the particulate pollution.

Data availability

The data availability is discussed here keeping in mind the
approach of estimating PM10 with the help of various regres-
sion models utilizing the AODMODIS, PM10, and meteorolog-
ical parameters such as relative humidity (RH), wind speed
(WS), and atmospheric temperature (AT). All these data were
obtained from the UPPCB monitoring station coincidental to
the measurements of AODMODIS.

The Terra and Aqua satellites cross the equator at about
10:30 a.m. (descending orbit) and 1:30 p.m. (ascending orbit),
local sun times, respectively, with a scanning swath of
2,330 km (cross track) by 10 km (along track at nadir)
(Remer et al. 2005). In the collection 5 aerosol retrieval
algorithm, three different channels of 0.47, 0.66, and 2.1 μm
are primarily employed for over land aerosol retrievals while
other channels are used for screening procedures (e.g., detec-
tion of cloud and snow and ice cover, etc.). AODMODIS is
reported at the wavelength of 0.55 μm at 10 km×10 km
spatial resolution as level 2 data (Levy et al. 2007a, 2007b)
The global validation of AODMODIS product has already been
described very well by Levy et al. (2010). In brief, more than
66 % of AODMODIS was found to be comparable to AErosol
RObotic NETwork (AERONET)-retrieved AOD within an
expected error envelop, ΔAOD=±(0.05+0.15 AOD) with a
high correlation (R=0.9). Both Terra- and Aqua-retrieved
AOD were similarly comparable to AERONET retrievals;
however, Terra’s global AOD bias changed with time,
overestimating by ~0.005 before 2004 and underestimating
by a similar magnitude after due to calibration uncertainty
(Levy et al. 2010). Many studies have evaluated the quality of
AODMODIS over the Indian subcontinent. Jethva et al. (2007)
have found nearly 70 % of the retrievals falling within the
aforesaid error envelope with a high correlation (R=0.91)
based on the comparison with Kanpur AERONET site which
is the only AERONET site within 300 km radius from Agra
(India). However, Tripathi et al. (2005) found the AODMODIS

bias for the same location as low as 0.12±0.11 during the
nondust loading season (R ~0.84) and much higher (0.4±0.2)
particularly during the dust-dominated seasons (R ~0.85). The
present study employed the AOD values retrieved from
MODIS sensors for the level 2 pixels overlying the ground-
based monitoring station. These AOD values were retrieved
with quality control flags (Quality Assurance Land (QAL)) 2
and 3 where flag 2 indicates as good confidence and 3 as very
good confidence.

The ground-based monitoring site employed Met One
Instrument model BAM-1020, which automatically measured
and recorded the PM10 concentration and the meteorological
parameters every hour for the entire day (i.e., 24 h). Met One
Instrument model BAM-1020 records airborne particulate
concentration levels using the principle of beta ray attenua-
tion. A measured amount of dust-laden air is pulled through a
filter tape, and then, dust-loaded filter is automatically placed
between the source of high-energy electron known as beta
particles and the detector there by causing an attenuation of
the beta particle signal. The degree of attenuation of beta
particle signal is used to determine the mass concentration of
particulate matter (Met One Inc. 2008). The working principle
of Met One Instrument model BAM-1020 is different than
that of another automated method for PM monitoring known
as tapered element oscillating microbalance (TEOM) which is
widely used in the USA, Australia, Hong Kong, and Europe.
In this method, the measuring signals are clearly related to the
inertia of deposited mass (Hauck et al. 2004).

During the study period, the monitoring station could re-
cord PM10 only for 15 days a month and, for the remaining
period of 15 days, it was recording PM2.5. These data were
analyzed within ±15-min time window of Terra and Aqua
overpasses. The AODMODIS and PM10 data were generally
scantly available for our study area during the monsoon
period.

Approach

The approach in brief envisaged the application of various
linear, multi-linear, and log-linear (logistic) regression models
to the given data sets and then finding out the best of these
models after analyzing their results to have the reliable esti-
mates of PM10. While formulating the multi-linear regression
models, it was also envisaged to include the in situ measured
meteorological parameters as regressors in addition to the
AODMODIS. Some recent studies have supported the use of
the meteorological parameters to improve the correlative
estimation of PM with the help of AOD. The meteorological
and other ancillary data sets were used by Gupta et al. (2006)
to assess the effect of the wind speed, cloud cover, and height
of mixing layer (MH) on PM air quality. Their study demon-
strated that PM2.5–AOD relationship was strongly dependent
on aerosol concentration, ambient RH, fractional cloud cover,
and MH. The study finally concluded that these data were
necessary to further apply satellite data for air quality research
(Gupta et al. 2006). The weather conditions can greatly influ-
ence aerosol loading. Thus, the effect of weather conditions
such as wind velocity, relative humidity, temperature, and
atmospheric pressure can confound the AOD–PM association
(Kumar et al. 2007; Grguric et al. 2013; Gao and Zha 2010). It
has been further emphasized to control for meteorological
conditions to estimate PM mass by using AODMODIS as these
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conditions can influence AOD in a number of ways. RH and
dew point have a direct impact on particle size, whereas the
wind speed effects the mixing of aerosols (Kumar et al. 2011).
Based on all these findings, the present study used only three
meteorological parameters, namely, RH, WS, and AT which
were most commonly used in the above studies. The MH was
not considered in this study since, directly or indirectly, it is
related to these main meteorological parameters.

The data of years 2010 and 2011 were used for the devel-
opment of regression models, while the data of year 2012
were used exclusively for the purpose of model testing and/or
validation studies. The study first proposed to evaluate the
linear regression models as presented below in set I.

Set I: linear regression models

Initially, the correlation of 24-h average (avg) PM10 with
AODMODIS alone was checked with the help of the simplest
form of regressionmodel (a) below. This model is more usable
practically as the PM air quality standards in India are defined
in terms of 24-h avg PM10.

24� h avg PMi ¼ αþβ1AODi þ ei ðaÞ

where suffix i denotes the ith observation, PM is PM10 mea-
sured by AAQMS along with the meteorological parameters,
AOD is AODMODIS, α and β are the estimators, and ei is the
residual error in the estimation.

The hourly PM10 data coincidental to AOD measurements
are likely to give better correlation with AOD alone than 24-h
avg PM10 data. This is to be evaluated with the help of the
model (b) below

Hourly PMi ¼ αþβ1AODi þ ei ðbÞ

The better of the above two associations is proposed to be
studied further to assess the impact of meteorological param-
eters on the estimation of PM10. This impact was evaluated
step by step for each of the meteorological parameters. First,
the impact of RH was studied through the set I (c) model and
then meteorological parameters WS and AT were added in
subsequent steps through the set I (d) and (e) models given
below. These models were expected to show some incremen-
tal improvement in the correlation as a result of the addition of
specific meteorological parameter.

�PMi ¼ αþβ1AODi þβ2RHiþei ðcÞ

�PMi ¼ αþβ1AODi þ β2RHiþβ3WSiþei ðdÞ

�PMi ¼ αþβ1AODi þ β2RHi þβ3WSiþβ4ATi þei ðeÞ

where asterisk “*” denotes the 24-h avg PM10 value or hourly
PM10 value whichever had the better association with
AODMODIS through the linear regression set I models (a)
and (b). All other terms have their usual meanings defined
earlier.

The observed values of PM, AOD, and meteorological
parameters were found to have some substantial skewness
(more than 1) in their variations about their mean values.
This finding suggested that the logistic regression models on
the lines of the linear regression models of set I may lead to
some improvement in the correlation over the linear regres-
sion models. Some researchers have tried the similar logistic
regression models to have the reliable estimates of PM10 with
the help of AODMODIS and other factors including the mete-
orological parameters (Kumar et al. 2008, 2011). Therefore,
this study also proposed below the application of logistic
models (set II) on the lines of the set I models. Further, the
reasoning behind adopting the following five logistic models
is same as that of the set I models.

Set II: logistic regression models

log 24� h avg PMið Þ ¼ α þ β1log AODið Þ þ ei ðaÞ

log hourly PMið Þ ¼ α þ β1log AODið Þ þ ei ðbÞ

log ��PMi

� � ¼ α þ β1log AODið Þ þ β2log RHið Þ þ ei ðcÞ

log ��PMi

� � ¼ α þ β1log AODið Þ þ β2log RHið Þ
þ β3log WSið Þ þ ei

ðdÞ

log ��PMi

� � ¼ α þ β1log AODið Þ þ β2log RHið Þ
þ β3log WSið Þ þ β4log ATið Þ þ ei

ðeÞ

where double asterisk “**” denotes the 24-h avg PM10 or
hourly PM10 whichever had the better association with
AODMODIS through the logistic models (a) and (b) of the
above set II. All other terms have their usual meanings.

Set I and set II models are also proposed to go through the
adequacy checks and model validation studies as briefed
below. Finally, the statistical performance of adequate and
validated models shall be compared to finally select a suitable
model for estimating the better and reliable estimates of PM10.

Model adequacy checks

As per the standard practice, the straight line plot between the
estimated responses vs observed responses is sometimes
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employed to assess the suitability of the model application.
After analyzing in detail the statistics of this kind of plots, it
has been found that the information and inferences provided
by such plots can be derived theoretically also by the regres-
sion results itself. It can easily be proved that the slope of such
plots is nothing but the coefficient of determination (R2) of the
developed linear regression model, and its intercept value is
always 1−R2 times the mean of the observed responses.
Further, the correlation between predicted and observed re-
sponses is also the same as that of the developed regression
model. The exercise of the said straight line plotting thus
becomes redundant, and hence, it has not been used in the
present study. For checking the model adequacy, a better
approach by Johnson (2005) was adopted. As per this ap-
proach, the assumptions involved in the least square-based
classical linear regression essentially ensure the residual errors
ei to be independent of the estimated responses. The adequacy
of the regression model can thus be checked by plotting the
residuals against the estimated responses. For models to be
adequate, residual plots should be confinedwithin a horizontal
band around the zero residual line. Any other defined distri-
bution patterns of residuals may lead to the suggestion of
transforming the proposed linear form of the regression model
and/or addition of the square terms of the independent vari-
ables in it. Any undefined pattern may lead to the decision to
declare the model as inadequate.

Model validation

The validation studies of the models under consideration were
carried out using the data for the year 2012 (validation year) to
examine whether the developed models were capable of esti-
mating PM10 appropriately or not. In the model validation

studies, first, the PM10 (estimated) was computed using the
observed AODMODIS and the meteorological parameter(s) of
the year 2012 using the estimators of the corresponding re-
gression model from the data of years 2010 and 2011. Then,
the coefficient of correlation (R) and standard error of esti-
mates (SE) were computed using the estimated and observed
PM10 values for the year 2012. These two parameters (R and
SE) were then compared with those computed during the
regression stage as a part of the validation process. It is
noteworthy that the magnitude of SE is very much influenced
by the mean of the observed responses. Hence, it will not be
appropriate to compare SE as such for the validation of
regression stages. In this study, an improvised term—“relative
standard error” (RSE)—has been defined as “SE as a percent-
age of the mean of the observed PM10 values,” i.e., (SE/mean
of observed PM10)×100, which is a more rational statistical
parameter for comparing the validation results with those of
the regression. Now, these parameters (R and RSE) cannot
only assess the models’ accuracy of estimation but also be
used to compare the performance of different types of models
when applied to data sets of different time periods.

Results

Descriptive statistics

Table 1 depicts the descriptive statistics in brief of all the
relevant parameters involved in the regression models as
mentioned in the approach. Mean, standard error, standard
deviation, range of values, and total count of the coincident
data sets for Agra City have been presented in this table for the

Table 1 Descriptive statistics of the input data for Agra City

Year Statistical parameter 24-h avg PM10, μg/m
3 Hourly PM10, μg/m

3 AOD RH (%) WS (m/s) AT (°C)

2010 Mean (μ) 70.48 72.98 0.62 38.41 3.86 26.71

Standard error 2.86 7.00 0.04 1.25 0.19 0.84

Standard deviation (σ) 32.00 39.70 0.20 9.90 1.57 6.67

Range 18.42–196.83 21.5–271 0.25–1.97 19.35–66.9 1.4–7.94 19.3–45

Count 125 63 63 63 63 63

2011 Mean (μ) 76.78 80.12 0.68 40.86 3.83 29.07

Standard error 3.25 6.67 0.02 0.94 0.19 0.81

Standard deviation (σ) 40.14 47.77 0.25 9.48 1.80 8.18

Range 28.83–179.45 16–342 0.20–1.41 22.3–67.55 1.52–9.68 8.45–45.65

Count 152 102 102 102 102 102

2012 Mean (μ) 90.83 141.75 0.89 38.63 4.48 27.78

Standard error 5.17 11.18 0.03 0.94 0.19 0.77

Standard deviation (σ) 71.63 85.24 0.19 9.34 1.91 7.63

Range 14.5–325 25–337 0.46–2.00 22.4–70.4 0.58–8.76 11.6–41.5

Count 192 98 98 98 98 98
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whole study period. The descriptive statistics of 24-h avg
PM10 values have also been presented in this table. The
Agra City had 165 coincident observations, i.e., data sets of
hourly PM10, AODMODIS, RH,WS, and AT during the period,
i.e., 2010–2011, for the purpose of regression studies and 98
such data sets during the year 2012 for the validation studies.
The annual mean (±1 standard deviation, σ) of hourly PM10

(μg/m3) ranged from 72.98 (±39.70) to 80.12 (±47.77) in the
regression period, while it suddenly jumped to 141.75
(±85.24) in the validation period. The annual mean of the
24-h avg PM10 (μg/m3) ranged from 70.48 (±32.00) to
76.78 (±40.14) in the regression study period and then rose
to 90.83.75 (±71.63) in the validation period 2012. Both these
annual means were found to be increasing year by year but
with a sudden rise in the year 2012. The annual mean of
hourly PM10 during the validation period was found almost
1.5 times the mean of 24-h avg PM10 raising the possibilities
of increased daytime activities of pollution generation and/or
transport in the year 2012. The annual mean of AODMODIS

(dimensionless) also varied almost in a similar fashion, from
0.62 (±0.20) in the year 2010 to 0.89 (±0.19) in the year 2012,
thereby indicating a year by year increase in Agra City. The
annual mean of the meteorological parameters, i.e., RH, WS,
and AT, did not have much yearly variation, and their values
centered around 40 %, 4.0 m/s, and 28 °C, respectively. These
meteorological parameters have substantial variation both
month wise and season wise in the study area.

Figure 1 shows the variation in the mean monthly values of
PM10 and AODMODIS. The mean values were computed for
hourly PM10 data for those months which had at least 12 data
sets. AOD data are not available generally for the monsoon
season and in month of January. Mean monthly PM10 (μg/m

3)
was observed to be lowest as 45 (±10.97) in the month of
February/March and highest as 159.33 (±25.93) in the month
of November/December. The months of June and October
also witnessed relatively higher concentration of PM10. The

similar findings for PM10 variations have also been reported
by Pachauri et al. (2013) and Singh and Sharma (2012) for the
city of Agra. Mean monthly AODMODIS varied from 0.45
(±0.12) in the month of February/March to 1.05±0.26 in the
month of June. These findings were supported by the findings
by Ahmad et al. (2012) who studied the AODMODIS variation
for Aligarh, a nearby city of Agra wherein they attributed the
decrease in AODMODIS during February/March to the
changed weather conditions and attributed the high
AODMODIS inMay/June to the dust storms coming along with
hot winds from western Rajasthan.

Estimation of PM10 using linear regression models

Five types of linear regressionmodels (set I) were studied, and
the results are presented in Table 2. From the close perusal of
these results, it was evident that both hourly PM10 and 24-h
avg PM10 had a weak correlation with AODMODIS alone.
However, the correlation of hourly PM10 (R=0.41, p≤0.05)
was found to be almost twice as compared to that of 24-h avg
PM10 (R=0.22, p≤0.05) with AODMODIS alone. Wang and
Christopher (2003) correlated the AOD results from the Terra
and Aqua satellites with both hourly and 24-h averaged PM2.5.
They found a coefficient of correlation (R) of 0.70 when
hourly PM2.5 was linearly related with AODMODIS for the
aggregated data of all the sites, and when the data were
aggregated for daily means of PM2.5, R increased to 0.98.
On the other hand, Justice et al. (2009) examined the impact of
diurnal variation in PM2.5 on R2. It was found that R2 values
from hourly PM2.5 were higher than those from the daily
averages. For this reason, the linear regression of hourly
PM10 with AODMODIS was further extended to include the
meteorological parameters as additional regressors. This study
showed a substantial improvement in the linear correlation
when the meteorological parameters such as RH, WS, and AT
were added as successive regressors in addition to AODMODIS

for the estimation of hourly PM10. It has been found that the
RH had the maximum incremental impact of 0.19 on the
coefficient of correlation (R), whereasWS has the least impact
of only 0.06. AT has a moderate impact of 0.09 on R. Thus, a
moderate value of R (~0.60) or above could be achieved only
by the models (c), (d), and (e) of set I as 0.60, 0.66, and 0.75,
respectively. Nevertheless, all the linear regression models as
studied above were found to be significant (p≤0.02). The
estimators (α and β) of all these five models were also found
to be significant (p<0.05). The RH can affect the AODMODIS–
PM10 association through changing the optical properties of
the aerosols. The higher the RH, the larger the proportion of
light is scattered and, hence, the larger AOD. Therefore, the
slope should be smaller with larger RH (Zhang et al. 2009).
Surface level wind speed has been found to be a highly
significant regressor in the regression model types (d) and
(e), and negative sign of its estimator showed that

Fig. 1 Monthly variations of PM10 and AODMODIS during the study
period 2010–2012. Bars indicate ±1 standard deviation
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AODMODIS estimated lower PM10 concentration at higher
wind speed. Ambient temperature was also found to be a
significant predictor, although its impact on the estimation of
PM10 concentration is relatively small. The negative sign of its
estimator also showed that AODMODIS estimated lower PM10

concentration at higher temperature which may become very
unstable at smaller sample size (Liu et al. 2006). The succes-
sive addition of the meteorological regressors did not result in

any specific trend in the variation of the estimators. The model
adequacy checks and its validation studies were carried out
only for the models having at least a moderate R value.

Model adequacy checks were applied only to the models
(c), (d), and (e) of set I which had a moderate R value. The
residual errors were plotted against the estimated PM10 for
these models (Fig. 2). All the three plots in this figure clearly
showed an increasing trend of residual error (positive/

Table 2 Statistical results of linear regression models

Model reference Statistical parameters

R (sig.) RSE (%) α (sig.) β1 (sig.) β2 (sig.) β3 (sig.) β4 (sig.)

Set I (a) 0.22 (0.02) 52.9 65.41 (0.00) 36.73 (0.01) – – –

Set I (b) 0.41 (0.00) 74.3 15.08 (0.09) 94.71 (0.00) – – –

Set I (c) 0.60 (0.00) 65.6 −120.91 (0.00) 123.44 (0.02) 2.93 (0.00) – –

Set I (d) 0.66 (0.00) 61.9 −41.58 (0.02) 106.13 (0.03) 2.30 (0.00) −11.04 (0.05) –

Set I (e) 0.75 (0.00) 54.5 131.60 (0.04) 130.42 (0.00) 0.74 (0.03) −10.80 (0.01) −4.01 (0.00)

Fig. 2 Residual plots for the
linear regression models of set 1
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negative) with increasing PM10 values. These increasing
trends indicated the need of model transformation for im-
proved estimation of PM10 concentration.

The validation of the models (c), (d), and (e) of set I was
carried out with the data of 2012. The results of this study
(Table 4) showed that the coefficients of correlation for the
validation period were close to that of the regression stage for
all the three models. Similarly, the RSE values of the valida-
tion stage were also found to be close to that of the regression
stage. The model set I (e) had the maximum R (0.75) and the
least RSE, and therefore, it could be claimed to provide a
better estimate of PM10 with the help of AODMODIS, RH,WS,
and AT.

Estimation of PM10 using logistic regression models

The results of the regression studies for the log-linear models
of set II are presented in Table 3 which showed the similar
findings as that for the set I models. The log transformation
reduced the skewness in the data distribution, consequently
increasing the accuracy of the estimated regression coeffi-
cients (estimators) and their standard error (Liu et al. 2006).
AODMODIS alone has been found to have a very weak log-
linear correlation with 24-h avg PM10 (R=0.26, p=0.05) but a
better log-linear correlation with hourly PM10 (R=0.48,
p<0.05). The impact of the meteorological parameters was,
therefore, studied only on the log-linear correlation of hourly
PM10 with AODMODIS. Like linear regression results, this
study also showed significant improvements in the log-linear
correlation when RH,WS, and ATwere added successively to
AODMODIS as additional regressors for the estimation of
hourly PM10. RH has been found to have the maximum
incremental impact of 0.19 on R followed by the impact of
WS as 0.09 and then AT having the least impact of only 0.05.
The level of significance for all the regression models in this
case and also for their estimators was found to be less than or
equal to 0.05. In this case, the models which could achieve a
moderate value of R were (c), (d), and (e) of set II with R
values as 0.67, 0.76, and 0.81, respectively. Here, also the
impact of meteorological parameters and of their estimators is

experienced and analyzed in a similar manner as has been
described for the multi-linear regression models above.

The residuals vs estimated PM10 scatter plots are shown in
Fig. 3 (a), (b), (c) for the models (c), (d), and (e) of set II
respectively. None of these residual plots showed an ideal
scatter to declare the models as perfectly adequate. All the
three scatter plots are similar in pattern. These plots are a fusion
of a constant band and a divergent trend of residuals, meaning
thereby a further transformation in these models may facilitate
a better estimation of PM10 concentration. Nevertheless, these
plots suggested the better adequacy of the log-linear regression
models over the linear regression models.

The results of the validation studies of the models (c), (d),
and (e) of set II are presented in Table 4. The validation R for
all the three models was found to be constant about 0.76, but
not much different from the regressionR. The RSEwas almost
the same for both stages and regression as well as validation.
The model (e) of set II had the maximum R and the least RSE,
and thus, it was able to provide the best estimates of PM10

among the models presented in this study. However, the
validation results were found to be satisfactory here also for
all the three models (c), (d), and (e) of set II.

Discussion and conclusions

From the analysis of the results presented above, it is evident
that the PM10 has a weak correlation with AODMODIS when
chosen as the only regressor in the linear and log-linear form.
However, AODMODIS has shown a better correlation with
hourly PM10 (R ~0.45) than with 24-h avg PM10 (R ~0.24).
Log-linear regression models (set II) are able to provide
slightly better estimates of PM10 than the linear regression
models of set I with the help of AODMODIS and in situ
measured meteorological parameters. The models are able to
attain a moderate R value only when RH is added to the
AODMODIS as the second regressor. Further improvements
in R with the addition of WS and AT as the third and fourth
regressors are not substantial. The increments are only 0.06
and 0.09 in case of linear models and 0.09 and 0.05 in case of

Table 3 Statistical results of logistic regression models

Model reference Statistical parameters

R (Sig.) RSE (%) α (sig.) β1 (sig.) β2 (sig.) β3 (sig.) β4 (sig.)

Set II (a) 0.26 (0.05) 11.64 1.96 (0.00) 0.33 (0.01) – – –

Set II (b) 0.48 (0.00) 13.4 1.96 (0.00) 0.77 (0.00) – – –

Set II (c) 0.67 (0.00) 11.73 0.03 (0.04) 1.03 (0.01) 1.25 (0.00) – –

Set II (d) 0.76 (0.00) 10.05 0.97 (0.00) 0.83 (0.04) 0.83 (0.00) −0.59 (0.00) –

Set II (e) 0.81 (0.00) 8.93 0.31 (0.05) 0.90 (0.00) 0.46 (0.03) −0.61 (0.00) −0.84 (0.00)
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log-linear models, respectively. The model (e) of set II, i.e.,
log-linear model with AODMODIS, RH,WS, and ATas regres-
sors, had the highest R as 0.81 and minimum RSE as 8.93 %
and thus was declared as the best model to estimate the hourly
PM10. However, the model adequacy checks suggested some
scope of improvements in these linear and log-linear models.

PM10 was being monitored only by one observation site
and was being correlated to the average AODMODIS value of
the pixel (10 km×10 km) covering the ground-based moni-
toring station. This situation is not very favorable for a very
robust correlation until we have at least four to ten ground-
based monitoring stations for each pixel. Further, there were
limitations in the availability of the PM10 data as it was
monitored only for 15 days a month as per the prevailing
practice of the monitoring by the AAQMS. For all these
reasons, the above PM10–AODMODIS association is not as
strong as has been reported for the other parts of the world.
Therefore, there is a strong possibility to have more accurate
and robust models once the data in desired volume are made
available for the city each year. Nevertheless, this study is
unique in a sense that it has used hourly values of PM10 which
have been found to have a better association with AODMODIS

than 24-h avg PM10 values.
The surface measurements of air quality cannot identify the

real problem of regional transport of pollutants and hence
cannot identify the source of pollutant as well. Since satellite

Fig. 3 Residual plots for the
logistic regression models of set II

Table 4 Brief comparison of regression and validation results

Model equation Coefficient of correlation, R RSE (in %)

Regression Validation Regression Validation

Set I (c) 0.60 0.68 65.6 42.90

Set I (d) 0.66 0.71 61.9 37.71

Set I (e) 0.75 0.72 54.5 36.9

Set II (c) 0.67 0.75 11.73 11.46

Set II (d) 0.76 0.76 10.05 9.44

Set II (e) 0.81 0.76 8.93 8.86
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measurements are routinely available on a global basis, the
transportation of pollution can easily be examined by the
proposed methodology. Further, the climatology of PM10

and its inter-annual variation in the city can be examined using
the above estimation models with the help of AODMODIS and
the meteorological parameters for the last decade. All these
would facilitate a better air quality management in the vicinity
of the historic monument Taj Mahal which is very important
from the tourism point of view. The proposed methodology
could also be useful in the air quality management of big cities
in India in a cost-effective manner where ground-based mon-
itoring data are scanty. However, direct extrapolation of the
results from this study to other regions may not be done
without further analysis. Thus, the proposed methodology
can be helpful in producing PM10 concentration maps for
the cities of Uttar Pradesh for the better satellite-based health
management strategies.
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