
1.  Introduction
Air pollution has been recognized as a major human health risk since ancient history (Fowler et al., 2020). After 
the Industrial Revolution air pollution has grown in both intensity and geographical extent, reaching critical 
levels; many large industrial areas and cities in Europe and North America have experienced episodes of marked 
air pollution. However, the limited evidence on its impact on human health at the time, meant that the signifi-
cance of the hazard went unappreciated. Severe air pollution episodes in Donora, USA in the late 1940s and the 
infamous Great London smog of 1952 were among the first instances of extreme air pollution to be statistically 
associated with negative health outcomes. By the 1980s, the link between air pollution and pulmonary disorders 
became widely acknowledged, but quantification of this relationship remained rare. In the 1990s, large cohort 
studies in North America reported surprisingly large health effects even at low levels of exposure (Dockery 
et al., 1993). The importance of air quality for human health has since been undisputed.

A large body of long-term exposure epidemiological studies relating air pollution exposure to human health 
outcomes has contributed enormously over the last two decades toward the development of quantitative methods 
to link chronic and acute exposures to these health outcomes. This, together with the development of networks of 
high precision measurements of air pollution, which allowed epidemiological investigations on a large scale, the 
development of global datasets of population distribution as well as the availability of reports of cause-specific 
disease rates by national statistical offices, made it possible to estimate the health burden resulting from exposure 
to air pollution on national, regional, and global scales.

Both short and long-term exposure to ambient air pollution causes increased morbidity and excess mortality from 
multiple health endpoints (Manisalidis et al., 2020), though the latter has comparatively much larger impacts on 
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public health, being significant even at very low exposure levels (Beverland et al., 2012; US EPA National Center 
for Environmental Assessment et al., 2020). The chronic exposure to ambient PM2.5 (particulate matter with an 
aerodynamic diameter of less than 2.5 μm) and ozone are associated with reduced life-expectancy, loss of healthy 
life years and excess mortality from cardiovascular as well as respiratory diseases (R. T. Burnett et al., 2014; J. 
Lelieveld et al., 2015; Murray et al., 2020; Pope et al., 2009; Prabhakaran et al., 2020). Recent studies have also 
implicated ambient PM2.5 exposure in adverse birth outcomes (Balakrishnan et al., 2018; Heft-Neal et al., 2018; 
Ritz et al., 2006) and mortality and morbidity from numerous other non-communicable diseases including diabe-
tes, neurological disorders and cancers among others (R. Burnett et al., 2018; Hahad et al., 2021; J. Lelieveld 
et al., 2020; Peters et al., 2019; Turner et al., 2020; Wong et al., 2016).

In 2019, 74% of total deaths globally resulted from non-communicable diseases (NCD), a significant increase 
from 54% in 1990. Of all deaths from non-communicable diseases in 2019, about 20% may be attributed to 
environmental risk factors (including, ambient air pollution, household air pollution, lead and radon exposure, 
extremes of temperature, unsafe water, sanitation, and hand washing). The exposure to ambient air pollution was 
found to be the single largest one (responsible for roughly 50% of the deaths from all environmental risk factors). 
More than 50% of these deaths from ambient air pollution exposure occur in China and South Asia, and about 
20% of the total global air pollution related deaths occur in high-income countries in Europe and North America. 
Given the now-extensive evidence of health risks even at very low concentrations of ambient PM2.5, this signifies 
the urgency of adequate air quality management also in countries with relatively low levels of air pollution expo-
sure (Papadogeorgou et al., 2019; Pappin et al., 2019; Shi et al., 2016; Yu et al., 2020). Recent studies indicate 
that excess mortality from ambient air pollution exposure has increased over the last decade (Butt et al., 2017; 
S. Chowdhury et al., 2020; Cohen et al., 2017), with further increases expected in the future (S. Chowdhury 
et al., 2018; Silva et al., 2017).

Recognizing the importance of the problem, partially due to aging of the population for whom NCD risks are 
higher, the United Nations Sustainable Development Goals (SDGs) have called for mitigation of mortality caused 
by exposure to outdoor PM2.5 by 2030. Achieving this goal will require accurate assessment of the mortality from 
exposure to present and past levels of ambient air pollution so to evaluate of the effectiveness of air pollution 
control policies to avert the health impacts. Therefore, accurate and precise estimation of mortality attributable to 
air pollution are extremely important to support and evaluate air pollution reduction policies.

The Global Burden of Disease (GBD) Studies (Cohen et al., 2017; Lim et al., 2012; Murray et al., 2020; Stanaway 
et al., 2018) provide a consistent and comparative description of the burden of diseases and injuries from multi-
ple risk factors including exposure to air pollution, which can help national-level decision-making and planning 
processes. Beginning with the 2015 data, the GBD is updated annually, allowing progress in mitigating the effect 
of air pollution (and other impacts) to be assessed and measured by all countries. With every update, the GBD 
incorporates the latest evidence, data and methods, thus refining the estimates of the burden of disease, changing 
the previous estimates, and making their comparison difficult. Dedicated studies have found that the data curated 
from evidence presented by the GBD are valuable for planning and prioritizing health policy, facilitate accounta-
bility, and monitor progress and trends over time between countries (Boogaard et al., 2019; Lundkvist et al., 2021; 
State of Global Air 2020, 2020). Apart from the GBD studies, over the last decade multiple global and regional 
studies have quantified the health impacts of ambient air pollution exposure, also linking the latter to source 
sectors (Balakrishnan et al., 2019; S. Chowdhury et al., 2018, 2020; Dedoussi et al., 2020; Goodkind et al., 2019; 
J. Lelieveld et al., 2015, J. Lelieveld, Klingmüller, Pozzer, Burnett, et al., 2019; Lelieveld, Klingmüller, Pozzer, 
Pöschl, et al., 2019; J. Lelieveld et al., 2020). Most such health impact assessment studies report the excess deaths 
associated with exposure to ambient air pollution, which may be defined as a steady-state difference in number of 
deaths between exposed and unexposed populations, that is, the number of deaths that would not have occurred 
with absent exposure over a defined period of time (R. Burnett et al., 2018; Hammitt et al., 2020). In addition, 
some studies also report age or time dependent criteria, for example, disability-adjusted life years (DALYs) and 
the years of life lost (J. Lelieveld et al., 2020; Owusu & Sarkodie, 2020).

Estimation of excess deaths attributable to ambient air pollution requires inputs on the spatial and temporal 
distribution of ambient air pollution exposure; an exposure response function that relates exposure to ambient air 
pollution and the relative risk (or hazard ratio, which represents instantaneous risk over the study time period); 
population counts and population age-distribution; background disease-specific death rates; and the counterfac-
tual exposure below which no excess risk of excess mortality from air pollution exposure exists. An attributable 
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fraction (AF), which indicates the contribution of a risk factor (here, ambient air pollution) to mortality from 
a disease is estimated from the relative risk corresponding to the exposure. Excess deaths are estimated as a 
product of AF and baseline death rates and population counts in a grid or an administrative unit. Such global 
health impact assessment studies published over the last decade report large disparities in excess deaths from 
ambient air pollution exposure, for example, Cohen et al. (2017) estimated 4.2 (95% confidence interval 3.7–4.8) 
million excess deaths due to air pollution exposure for the year 2015 while R. Burnett et al. (2018) estimated 8.9 
(7.5–10.3) million excess deaths for the same year. Such differences among the published estimates, can arise 
from the sources of the input parameters, which may nevertheless confuse or mislead decision makers and others 
who are not experts in the field.

To the best of our knowledge, no comprehensive reviews to date have examined the disparities in excess deaths 
from exposure to ambient air pollution at global level reported by published works. Various studies have been 
published considering only specific aspects of the global estimates. For example, the impact of different ERF has 
been previously investigated by R. Burnett and Cohen (2020), while the differences between two estimates (GBD 
2013 and GBD 2015) were analyzed in detail in Ostro et al. (2018). Although comprehensive views have been 
presented in Evangelopoulos et al. (2020) and Fuller et al. (2022), these works consider only a subset of GBD 
studies, leaving out numerous studies from the comparison.

Here, we systematically review the published studies reporting global excess mortality from chronic exposure 
to ambient air pollution. The aim is to analyze the methods, data and metrics applied, which may help explain 
the differences between results and conclusions in the literature. We focus on studies that report global excess 
deaths from chronic exposure to ambient PM2.5 and ambient ozone, together termed the exposure to ambient air 
pollution. We acknowledge that besides PM2.5 and O3, chronic exposure to other criterion air pollutants like nitro-
gen dioxide (NO2) and sulfur dioxide (SO2) are also hazardous to health (Anenberg et al., 2018; S. Chowdhury 
et al., 2021; Greenberg et al., 2016), however we do not assess their impacts in the current review. We attempt to 
compare the identified studies by comparing the input variables used by the authors to estimate the excess deaths. 
We have only included studies that report excess deaths globally since 2004.

2.  Literature Research
We conducted a literature search in January 2022 using the database in PubMed (https://pubmed.ncbi.nlm.nih.
gov/) and Web of Science (https://apps.webofknowledge.com/). We limited our search to journal articles published 
in English from January 2004 to December 2021 focusing on all studies that report excess mortality from ambient 
air pollution exposure. To identify the research articles we used the following keywords: “air pollution” AND 
“excess death or mortality, premature” AND “global.” In addition, we included studies suggested by experts and 
we investigated the references of the identified papers, to identify possible additional literature studies.

In Tables 1 and 2, the literature with global estimates of mortality attributable to air pollution is presented. A 
total of 31 studies is included in this work, with the first work published in 2005 (Cohen et al., 2005). The studies 
estimate excess mortality attributable to air pollution globally for different years, ranging from 1990 to 2020. In 
this sense particular attention has to be given to publications related to the GBD; these, may not only be referred 
to as milestones in this area, but also place deaths attributable to air pollution in relation to all other causes thus 
enhancing its significance in a broader context.

3.  Methodology for Estimating Excess Mortality
The calculation of excess mortality attributable to long-term exposure to air pollution in a certain location 
(M(x, y), with x, y representing the geographical coordinates) follows a well-established procedure (Anenberg 
et al., 2010):

M(x,y) =
∑

𝑗𝑗𝑗𝑗𝑗

AF𝑗𝑗𝑗𝑗𝑗(𝑋𝑋(𝑥𝑥𝑥 𝑥𝑥)) × Mort𝑗𝑗𝑗𝑗𝑗(𝑥𝑥𝑥 𝑥𝑥)� (1)

where j represents the disease (e.g., lung cancer, ischemic heart disease, and so on), k the age class, “Mort” the 
mortality registered in the location and “AF” the attributable fraction, that is, the fraction of “Mort” that can be 
attributed to the exposure to the pollutant X. Clearly, different sources of data can be used, and, as the mortality 
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is normally registered at national level, a traditional assumption is to scale it to the population data, by using the 
baseline mortality rate (BMR, i.e., Mortj,k/Popj,k) at national levels and the population (Pop) distribution at high 
resolution, so that

M(𝑥𝑥𝑥 𝑥𝑥) =
∑

𝑗𝑗𝑗𝑗𝑗

AF𝑗𝑗𝑗𝑗𝑗(𝑋𝑋(𝑥𝑥𝑥 𝑥𝑥)) × 𝐵𝐵𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗𝑗 × Pop𝑘𝑘(𝑥𝑥𝑥 𝑥𝑥)� (2)

Although the M(x, y) estimates can be derived at country, regional or local levels, the general approach for global 
calculation is to distribute these parameters on a global grid, so to avoid errors in the exposure due to co-location 
of pollution and population. The global estimate (M) is then obtained by the sum of M(x, y) for each location in 
the world (i.e., M = ∑x,y M(x, y)).

The population distribution (Popk) and the disease-related Mortality (Mortj,k) are obtained from official national 
statistical agencies. With the notable exception of the early GBD work (Cohen et al., 2005) where only monitor-
ing stations were used in the estimates, pollution concentrations are derived on a global scale, by either remotely 
sensed observations (Evans et al., 2013), model results (J. Lelieveld et al., 2015), or a combination of the two, 
in part also including measurement station data (van Donkelaar et  al.,  2019), with different resolution (from 
10 × 10 km [Evans et al., 2013] to ∼100 × 100 km [J. Lelieveld et al., 2013]). Although satellite remote sensing 
aerosol products are available at relatively fine spatial resolution, temporal coverage is not comprehensive (e.g., 
due to cloud presence and fixed time daily overpasses), and they need information from model simulations to 
estimate vertical concentration profiles to derive surface level exposure. On the other hand, model simulations, 
despite the coarser resolution, and provided that they reproduce the observations, allow studies on the attribution 
of pollution sources; these, therefore, have an important role by providing a basis for emission control strategies.

3.1.  Exposure Response Function (ERF)

The attributable fraction (AF) can be estimated for each age class k and disease j as:

AF𝑗𝑗𝑗𝑗𝑗 = (RR𝑗𝑗𝑗𝑗𝑗(𝑋𝑋) − 1)∕RR𝑗𝑗𝑗𝑗𝑗(𝑋𝑋)� (3)

with RRj,k(X) being the relative risk (or hazard ratio) for the pollutant X. The ERF is a mathematical function that 
describes the relative risk dependency on the pollutant abundance (i.e., RRj,k(X)). The ERF is an important term in 
the mortality calculation, as it quantifies and associates the increase in pollution with the increase in relative risk 
for different age categories and disease. The ERF has been investigated in several studies based on a multitude of 
epidemiological studies that focused on long-term exposure effects. As different naming conventions have been 
used over the years, here we applied the one used in the work of Ostro et al. (2004).

The initial efforts to develop an ERF based on epidemiological data were reported in Arden Pope (2002) and 
Ostro et al. (2004), where a log-linear (LI) function was adopted:

𝐿𝐿𝐿𝐿 ∶ 𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑗(𝑋𝑋) =
exp(𝛼𝛼𝑗𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑗𝑗𝑗(𝑋𝑋))

exp(𝛼𝛼𝑗𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑗𝑗𝑗(𝑋𝑋0))
= exp(𝛽𝛽𝑗𝑗𝑗𝑗𝑗(𝑋𝑋 −𝑋𝑋0))�

where X is the concentration of the pollutants (PM2.5 or O3) and X0 is the threshold where the pollutant is consid-
ered as not being harmful (i.e., RRj,k(X) = 1 for X < X0). This threshold is also named Theoretical Minimum Risk 
Exposure Level (TMREL). The unknown parameters (αj,k and βj,k, where only the last one is effectively used) are 
estimated by regression methods based on a collection of epidemiological study data. This function is still widely 
used in estimates of health effects from pollutants.

Soon after a log-log (LL) function was proposed as an ERF, to avoid unrealistically high values at high pollution 
concentrations (Cohen et al., 2005; Ostro et al., 2004):

𝐿𝐿𝐿𝐿 ∶ 𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑗(𝑋𝑋) =
exp(𝛼𝛼𝑗𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑗𝑗𝑗ln(𝑋𝑋 + 1))

exp(𝛼𝛼𝑗𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑗𝑗𝑗ln(𝑋𝑋0 + 1))
=

[

(𝑋𝑋 + 1)

(𝑋𝑋0 + 1)

]𝛽𝛽𝑗𝑗𝑗𝑗𝑗

�

A value of 1 was added to the X terms in the formula to ensure that the log function is defined at X = 0. Both the 
LI and the LL functions have been applied to different pollutants, such as ozone and PM2.5.

One major limitation of the aforementioned ERFs for PM2.5, has been the use of cohort studies limited to 
areas with relatively low concentrations (typically with an annual average below 35 μgm −3), which may not be 
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representative for highly polluted regions, for example, in South and East Asia. To remedy this limitation, the 
Integrated Exposure-Response (IER) function was developed for PM2.5 (R. T. Burnett et al., 2014), under the 
assumption that the toxicity is a function of mass concentration alone and that large intake over a short time 
period is equivalent to continuous inhalation for longer time periods, if the total dose remains the same. As cohort 
studies were not available at that time in low- and middle-income countries or with high levels of ambient PM2.5 
exposure, rather than extrapolating the risk at higher exposure ranges, the IER was constrained. This was done 
through the inclusion of studies performed at higher ranges of exposure, including those estimating RR due to 
household air pollution, passive smoking and active smoking along with the studies performed at lower ranges of 
ambient PM2.5 exposure in developed countries. IER is expressed as

𝐼𝐼𝐼𝐼𝐼𝐼 ∶ 𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗𝑗(𝑋𝑋) = 1 + 𝛼𝛼𝑗𝑗𝑗𝑗𝑗
[

1 − exp
[

−𝛾𝛾𝑗𝑗𝑗𝑗𝑗(𝑋𝑋 −𝑋𝑋0)
𝛿𝛿𝑗𝑗𝑗𝑗𝑗

]]

�

with RR = 1 for X < X0. The GBD updates the IER's parameters (αj,k, γj,k and δj,k) on a yearly basis with inclusion 
of new epidemiological evidence. Furthermore also additional outcomes are added once scientific evidence is 
present: while the IER traditionally includes 5 diseases (stroke (CEV), ischemic heart disease (IHD), chronic 
obstructive pulmonary disease (COPD), lung cancer (LC) and acute lower respiratory tract infections (ALRI)), in 
the 2017 update of GBD, new parameters were developed for type-2 diabetes mellitus.

To relax some assumptions such as the inclusion of household air pollution in the development of the IER, R. 
Burnett et al. (2018) developed the Global Exposure Mortality Model (GEMM) by only including results from 15 
studies that examined the relationship between long term exposure to ambient PM2.5 and excess mortality. A study 
on the association between ambient PM2.5 exposure and excess mortality among Chinese men was included as a 
part of these 15 studies. The average long term ambient PM2.5 exposure among the participants in the Chinese men 
study (P. Yin et al., 2017) was estimated to be 84 μgm −3, which was considered as a realistic high end of PM2.5 
exposure. Along with the information from these 15 cohort studies, 26 cohort studies for which subject-level 
information was not available were also included (R. Burnett & Cohen, 2020; R. Burnett et al., 2018). Further-
more, the GEMM was constructed for a broad group of mortality causes, incorporating all non-communicable 
diseases plus lower respiratory tract infections (NCD + ALRI). The GEMM has the following form

���� ∶ ���,�(�) = exp
(

��,�ln(�∕��,� + 1)
(1 + exp(−(� − ��,�)∕��,�))

)

�

with Z = max (0, X − 2.4), X being PM2.5 and with θj,k, αj,k μj,k and νj,k as parameters to be fitted with epidemi-
ological studies results. Furthermore, the GEMM was constrained for all-natural cause mortality (non commu-
nicable diseases), albeit with large uncertainties at high pollutant concentrations. The large differences in the 
results between GEMM and the previous ERFs have been acknowledged (R. Burnett & Cohen, 2020), see also 
Section 4.1, and it is expected that future results of these methods will converge, either through inclusion of addi-
tional studies or by improving further the shape of the function, especially at lower-level exposures.

Furthermore, the cohort of Chinese men (P. Yin et al., 2017) with exposures up to 84 μgm −3 skewed the GEMM 
curve, necessitating the inclusion of additional cohorts with higher levels of exposure (R. Burnett & Cohen, 2020). 
A new ERF, the MRBRT (meta-regression–Bayesian regularized trimmed), which was introduced in the most 
recent GBD update (Murray et al., 2020) addresses this issue by including studies of household air pollution, 
second hand smoking as well as multiple studies performed at high ambient exposure settings (T. Li et al., 2018; 
Yang et al., 2018; Yusuf et al., 2020):

����� ∶
�����(�)
�����(��� )

∼ log(Published Effect Size)�

where X and XCF represent the range of exposure characterized by the effect size. In contrast to the IER, the 
MRBRT and does not include active smoking.

One additional constrain in all epidemiological studies is the fact that they provide changes in mortality on a unit 
change of pollutant. Vodonos et al. (2018) to better match the epidemiological data, suggested an LL ERF with 
a varying βj,k depending on pollution level. While in general the ERFs model the response (and the coefficients) 
on the RR scale, the coefficient estimation of Vodonos et al. (2018) for the LL model are hence on the derivative 
scale.
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This was followed by R. T. Burnett et al. (2022), who suggested an additional ERF (so called Fusion), build also 
in the derivative space:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∶ 𝑅𝑅𝑅𝑅(𝑋𝑋) = exp

⎧

⎪

⎨

⎪

⎩

𝛾𝛾 × min(𝑥𝑥𝑥 𝑥𝑥) + ∫
𝑥𝑥

𝜇𝜇

⎛

⎜

⎜

⎝

1 +
1 − 𝜌𝜌

𝜌𝜌

(

𝑦𝑦 − 𝜇𝜇

𝜃𝜃 − 𝜇𝜇

)

𝜃𝜃−𝜇𝜇

𝜃𝜃(1−𝜌𝜌)
⎞

⎟

⎟

⎠

−1

𝑑𝑑𝑑𝑑 +𝜌𝜌𝜌𝜌 ln(max(𝑥𝑥𝑥 𝑥𝑥)∕𝜃𝜃))}�

with θ based on the concentration distribution of the cohorts and γ, ρ, and μ being estimated.

All these parameters in the ERFs are in principle constrained based on existing epidemiological studies, and their 
accuracy and precision strongly depends on the availability of such information. Any additional accuracy and/or 
precision given by a more comprehensive function (with more parameters) may diminish when appropriate data 
is lacking (here epidemiological studies). The IER, GEMM, and MRBRT are only built and used for estimating 
the impacts of PM2.5 exposure, while the LL and LI are generally used for ozone. However, the most recent GBD 
used the MRBRT developed from five cohort studies for ozone.

3.2.  Pollutants Associated With Mortality

3.2.1.  PM2.5

PM2.5 are fine particles suspended in the air (called aerosols), less than a 30th of the diameter of a human hair, 
not visible by the naked eye. These particles can be emitted directly (primary PM) or may be formed in the 
atmosphere through chemical reactions (secondary PM). They can be emitted from both natural (e.g., aeolian 
dust, sea salt, volcanic eruptions) and human-made sources (e.g., transportation, power plants, industrial activ-
ities). Although larger particles (PM10) can also be harmful to human health, PM2.5 penetrate deeper, reaching 
the alveolar sacs; these fine particles have relatively large surface area per volume and mass and can reach the 
vascular system directly having more far-reaching health implications than PM10. Data on the effects of exposure 
to ultrafine particles, which may have additional health impacts through their ability to migrate into the blood 
stream, are scarce. A large body of literature over the course of the last two decades has established exposure to 
PM2.5 as a robust metric for excess mortality and morbidity from cardiopulmonary, cardiovascular, lung cancer 
and other diseases.

PM2.5 is reported in micrograms per cubic meter and can be measured with high confidence by well main-
tained and calibrated ground-based measurement sites. However, monitoring density is very low in most low- and 
middle-income countries, noting that about 60% of the countries, accounting for 18% of the global population, 
have no PM2.5 (air quality) monitoring at all (Martin et al., 2019; Shaddick et al., 2018). Therefore, alternative 
methods for PM2.5 exposure assessment have gained importance. Global atmospheric chemistry models (informed 
by emission inventories) validated against observations, can be used for assessing exposure to PM2.5 (Brauer 
et  al.,  2012,  2016; S. Chowdhury et  al.,  2020,  2022; J. Lelieveld et  al.,  2015,  2020; Lelieveld, Klingmüller, 
Pozzer, Burnett, et  al.,  2019) but are often hamstrung by the coarse horizontal resolution. Recent exposure 
assessment studies have applied advanced techniques to utilize the desirable temporal resolution from global 
atmospheric models, accuracy of ground based measurements and high spatial resolution of satellite retrievals 
to produce hybrid products of PM2.5 exposure (Shaddick et al., 2018; van Donkelaar et al., 2010, 2019). Such a 
hybrid model has been validated against available PM2.5 in-situ observations (Hammer et al., 2020) for annual 
averages, obtaining a very high correlation (R 2 = 0.92) proving its value for obtaining pollutant exposure in areas 
where ground monitors are sparse or do not exist.

3.2.2.  Ozone

Tropospheric ozone is photochemically formed in the presence of carbon monoxide, volatile organic compounds, 
nitrogen oxides, and sunlight. It has adverse impacts on respiratory health in human beings and negatively affects 
vegetation and crop productivity. The precursors of tropospheric ozone to a large degree come from anthropo-
genic sources such as transportation, power plants, industrial activities and burning of solid fuels in households. 
Tropospheric ozone is also a greenhouse gas that contributes to climate change. Until recently, atmospheric 
chemistry model results alone were used to estimate ozone exposure (S. Chowdhury et  al.,  2020; Malley 
et al., 2017). However, the recent GBD uses a hybrid approach to combine the ground-based measurements from 
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the Tropospheric Ozone Assessment Report (TOAR, Tarasick et al., 2019) 
with atmospheric model simulations to build a 0.1° × 0.1° resolution global 
data set (DeLang et al., 2021; Murray et al., 2020).

Tropospheric ozone is measured in mixing ratios units of nmol/mol 
(10 −9 mol/mol), or, equivalently, parts per billion (ppb). In many publications 
the general term concentration is used, “not distinguish between mixing ratio 
metrics or true concentrations metrics such as μgm −3” (Lefohn et al., 2018), 
which is to be considered incorrect (Sander, 2000).

Unlike PM2.5 exposure, which is generally expressed in the form of annual 
population-weighted means, exposure to ozone is represented by appropriate 
metrics as described in the TOAR (Lefohn et al., 2018). Until the GBD 2019 
release (Murray et al., 2020), which adopted the MRBRT, all studies used 
the LI/LL function for estimating the RR from tropospheric ozone exposure; 
normally, the studies that used the coefficient (β) from Jerrett et al. (2009) 
applied the highest 3- or 6-month averages of the daily maximum 1-hr ozone 
concentration over a full year as the ozone exposure metric. The studies that 
used the more recent coefficients from Turner et al. (2016) adopted the annual 
average daily maximum 8-hr ozone concentration for each grid cell, consist-
ent with the analysis from which the relative risk estimates were derived 
from these two cohort studies. The most recent update of the GBD used “the 
highest 6-month average of the daily maximum 8-hr ozone concentration” 
(Murray et al., 2020), where mixing ratio is meant in place of concentration.

3.2.3.  Counterfactual Level

All the ERFs presented above were fitted across the entire spectrum of expo-
sure from the highest level to a level at which no excess risks from exposure 

to a pollutant are assumed (X0). Since the GBD 2015 update (Cohen et al., 2005; Forouzanfar et al., 2015), X0 
for PM2.5 has ranged between 2.4 and 5.9 μgm −3. Over the years the value of X0 for PM2.5 was reduced from 7.5 
μgm −3 (Cohen et al., 2005), but still no firm threshold for PM2.5 has been identified below which no damage to 
health is observed (WHO, 2013). The most recent MRBRT is structured to allow its users to select an X0 of 0 
μgm −3. Recently, Weichenthal et al.  (2022) investigated the health outcomes of air pollution in low exposure 
environments, revealing a much larger impact than previously estimated, with a possible addition of 1.5 million 
attributable deaths for PM2.5 below 5 μg/m 3.

The X0 for tropospheric ozone exposure ranged between 26.7 and 41.9 nmol/
mol depending on the exposure metric applied and the ERF used. The recent 
GBD distributes X0 between 29.1 and 35.7 ppb.

4.  Results
4.1.  Fine Particulate Matter

Figures 1 and 2, depict the global-total excess deaths estimated in the stud-
ies tabulated in Table 1. The global estimates tend to cluster in two groups, 
one with excess deaths above 6 million/year, and another with excess deaths 
between 2 and 4 million/year. The lowest number of excess deaths estimated 
among the studies reviewed here is 0.8 million/year from Cohen et al. (2005), 
which was the first burden of disease study performed, and included the two 
end points-cardiopulmonary diseases and lung cancer. This work included 
impacts of fine particulates only in large population centers, therefore leaving 
out most of world's population; furthermore, it used counterfactual of 7.5 
and, due to the lack of studies at higher concentrations, the risk level was 
limited at PM2.5 equal to 50 μgr/m 3. More recently, a comparably low value 
has been estimated by Silva, Adelman, et al. (2016), where only 1.7 million 

Figure 1.  Graphical representation of estimates of global excess mortality 
attributable to atmospheric fine particulate (PM2.5) air pollution. The symbols 
show the average estimates, while error bars represent the 95% confidence 
levels. The color code denotes the ERF used in the study (yellow: LI, 
green: IER, orange: GEMM, blue: MRBRT, gray: LI with β from Vodonos 
et al. [2018], red: FUSION). The dashed lines represent calculations for 
all-cause mortality. The circles are estimates from the GBD. The x-axis 
indicates the publication year. Data are from Table 1.

Figure 2.  Colors and symbols as Figure 1. The x-axis indicates the years for 
which the estimates were derived.
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excess deaths were estimated for the year 2000. The highest number of excess deaths was estimated by Vohra 
et al. (2021) at 10.2 million/year, for all-cause mortality, using a LI ERF built with coefficients obtained from 
a meta-analysis that pools 53 studies examining the effects of chronic exposure to fossil fuel related PM2.5 on 
health. This comparatively high estimate can be attributed to (a) the use of LI ERF, the shape of which does not 
limit the magnitude of relative risk at higher concentrations, unlike in GEMM, IERs and MRBRTs, and (b) the 
estimation of excess deaths from all-causes for the population above 14 years old. It must be stressed that the 
uncertainties associated with this estimate are very high, with a 95% confidence level between −47.1 and 17.0 
million/year, only associated with the AF uncertainties. This will be discussed in Section 4.3.

The choice of ERF (color-coded in Figure 1), and the number of the health outcomes investigated are the most 
significant factors resulting in the large disparities among studies, with the GEMM being used in the studies 
which estimated an excess mortality higher than 8 million/year for all NCD plus ALRI, while LI, LL, and IER 
present similar results over the years. Interestingly, R. Burnett et  al.  (2018), using the GEMM function and 
the same population and BMR distribution, estimated higher numbers for NCD plus ALRI (8.9 million/year), 
compared to sum of LC, IHD, CEV, COPD, and ALRI (6.9 million/year), suggesting that PM2.5 may increase 
the risk of deaths from additional causes beyond these 5. Nevertheless, even including only the LC, IHD, CEV, 
COPD and ALRI as cause of death, the GEMM function gives higher results than similar work with other ERFs. 
This was already pointed out in the work of R. T. Burnett et al. (2022), who suggested that the main difference 
is due to the inclusion of cohort studies of second-hand smoke and household pollution with lower hazard ratio 
estimates compared to those obtained from cohort studies of outdoor air pollution.

In addition, not only the ERF function but also its shape can significantly change the estimates. In fact, as shown 
by Weichenthal et al. (2022), most of the world population is exposed to relatively low level of pollution, so that 
the concavity of the ERF in this range can drastically change the global estimates.

We anticipate a slightly smaller, though not inconsequential, effect of other factors (i.e., source of PM2.5 data, 
population data, baseline death rates, choice of counterfactual concentration and study year) on the estimated 
total excess deaths (see Equation 2). To investigate this, we redraw Figure 1 by the study year for which the excess 
deaths were estimated (Figure 2). The estimates based on the GEMM and the work of Vodonos et al.  (2018) 
present larger differences than the one using LI, LL, IER and MR-BRT, independently of the estimated year. This 
indicates the largest influence of the ERF selection compared to the other input data on the overall results, as 
already noticed before. Nevertheless, once the ERF is fixed, other factors do influence the results significantly, 
with noticeable differences between the estimates. For example, the GBD studies (Anenberg et al., 2010; Cohen 
et al., 2017; Forouzanfar et al., 2015; Lim et al., 2012; Murray et al., 2020; Stanaway et al., 2018) and the study of 
S. Chowdhury et al. (2020), that estimated the excess mortality for two study years using similar data sources for 
all factors, found a considerable impact of epidemiological and demographic transitions between the two study 
years on changes in excess mortality. Similar to our results, Ostro et al. (2018) found that the GBD estimates 
between 2013 and 2015 increased by 23% by updating the ERF coefficients of the IER function alone, and by 
only 8% by updating the exposure data (i.e., population and pollutants distribution); the combination of both 
changes increased the estimates by 35%.

Furthermore, the source and spatial resolution of PM2.5 exposure data can result in minor disparities among the 
estimates, although (Kushta et al., 2018) found only a minor impact of changes in horizontal resolution of expo-
sure data on excess deaths compared to the large influence of the choice of ERF and health endpoints investigated 
(S. Chowdhury et al., 2020, 2022).

Finally, the large majority of studies used the same population data, and, it can be assumed that differences is 
such data are generally modest although they might vary between different versions of the data set (GPW3, 2005; 
GPW4, 2016). A similar assumption can be made for the BMR, where data from the same source (GBD) have 
been used for all studies since 2010 (Forouzanfar et al., 2015, 2016; Lozano et al., 2012; Murray et al., 2020; 
Stanaway et al., 2018). While these data can be considered of the highest available quality, this approach limits 
the differences among the various estimates.

4.2.  Ozone

The global estimates of excess mortality due to long term ozone exposure are reported in Table 2 and presented 
graphically in Figure 3. The largest value estimated is about 1.3 million/year (S. Chowdhury et al., 2020) for 
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excess deaths from all respiratory diseases, while the minimum estimated 
is 142 thousand/year from COPD (J. Lelieveld et  al.,  2015). The esti-
mates presented show that the PM2.5 exposure causes roughly 12 ± 8 times 
higher excess mortality than that due to ozone exposure, that is, fine partic-
ulate related mortality is roughly an order of magnitude larger than from 
ozone. Nevertheless, this ratio varies widely, ranging from 2.7 (J. Lelieveld 
et al., 2013) to 30.0 (J. Lelieveld et al., 2020). Importantly, in the global esti-
mates presented, the excess mortality is calculated either for only one disease 
(COPD) or for all respiratory diseases, with a factor of 3 difference between 
the two approaches, even with coefficients derived from similar cohort stud-
ies, pollution levels and population distribution. In Figure 3, the estimates 
are graphically represented, with causes of death depicted in different colors.

In contrast to PM2.5 the estimates of excess mortality are less variable with 
time, with a general consensus of ∼350 (CL 95%:150–550) thousands excess 
deaths/year for COPD as a cause of death.

4.3.  Uncertainties

In the studies considered, uncertainties of mortality estimates are typically 
represented by 95% confidence levels. To analyze the sources of errors 
associated with Equation  2, the confidence levels have been converted to 
normalized standard error (NSE, i.e., standard error divided by the estimated 
value, also known as relative standard deviation), to obtain a uniform metric 

for uncertainty comparison, by assuming a normal distribution of the uncertainties. Following Equation 2, the 
uncertainties associated with excess mortality arise from the multiplication terms, that is, the attributable fraction 
(AFj,k(X (x, y))), the baseline mortality (BMRj,k), and the population distribution (POPk(x, y)).

As the population data is also used to globally distribute the baseline mortality rates, it is essential to have a 
reliable population spatial distribution map. Most of the studies use similar data for population from the Gridded 
Population of the World data set (GPW3, 2005; GPW4, 2016), regardless of the availability of various gridded 
population datasets (Leyk et  al.,  2019), even at higher spatial resolutions. These gridded population datasets 
strongly differ in the methodology used for population distribution, such as areal weighting method, dasymetric 
mapping, statistical modeling, or a hybrid approach (Leyk et al., 2019). GPW, different to other global gridded 
datasets, does not use any modeling for population distribution, and it assumes a uniform distribution in the target 
areas. This approach, although computationally very efficient, means that this data set is suited for policy-making 
efforts that do not require fine spatial resolution (Doxsey-Whitfield et al., 2015). It has been shown, in fact, that 
on a local level, the GPW is associated with discrepancies compared to other (probably more accurate) datasets 
of regional/local population distribution (e.g., Bai et al., 2018; X. Yin et al., 2021). It is difficult to assign an 
uncertainty to the population distribution and size, as this depends on the errors in the original (census) data, 
areal aggregation and the ancillary data used for the distribution (Leyk et al., 2019). Furthermore, as GPW does 
not adopt any statistical method to distribute the population, traditional metrics such as standard deviations or 
stand ard errors are not available. We therefore adopted as an indication of the uncertainties, the confidence level 
range that the GBD provides for its population data at country levels. Although this does not represent the error 
of the GPW data itself (and the uncertainties in the population distribution), it can be assumed to be of the same 
magnitude. The GBD, based on more than 1200 censuses and 700 population registries, estimated a maximum 
NSE of ∼15% for Afghanistan, a value of below 1% for many countries, and an average NSE of ∼4% (at country 
level).

Similar to the population, the baseline mortality rate is subject to statistical and methodological uncertainties. The 
numbers of deaths and causes of mortality are available at global scale on country level from the Global Health 
Estimates (GHE) of the World Health Organization (WHO), which are used to produce the GBD estimates. 
The WHO relies on information provided by member states, using vital registration data contained in the Inter-
national Classification of Disease (ICD) (Roth et al., 2020). Also here the uncertainties are difficult to assess, 
as they mostly depend on data source reliability which in turn is influenced, for example, by the attribution of 
causes of death and practices in the reporting countries, which may contain large uncertainties, especially in low 

Figure 3.  Graphical representation of estimates of global excess mortality 
attributable to ozone (O3) pollution. The symbols are the average estimates, 
while error bars represent the 95% confidence level. The color code denotes 
the cause of death used in the study (yellow: all respiratory diseases, green: 
COPD). All studies used a LI ERF, with the exception of the dashed ones, 
which adopted an LL ERF. The circles are estimates from the GBD. The x-axis 
indicates the publication year. Data are from Table 2.
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and middle income countries. GHE also assesses the data quality of the mortality data set (Mathers, 2005) and 
95%CL for the country mortality rate is available for the GBD. As expected, the NSE depends on the country, age 
group, and burden of disease from different health outcomes. Based on the health outcomes included in the global 
estimates, the maximum NSE (at country level and for all age classes) for the BMR are 72%, 42%, 40%, 186%, 
55%, and 36% for LC, IHD, CEV, COPD, ALRI and NCD, respectively. The lowest NSE is below 2% for all of 
the health outcomes listed. On average (at country level and all age classes), NSE values of 13%, 10%, 12%, 20%, 
14%, and 6% have been calculated for LC, IHD, CEV, COPD, ALRI, and NCD, respectively. The uncertainties at 
country levels for the BMRs are therefore somewhat larger than for the population, although this varies for differ-
ent countries. Another source of uncertainties for BMR is its spatial distribution: as BMR is produced by dividing 
the mortality at the country level (cause by specific diseases and for a specific age class) with the total population 
of the same country (i.e., BMRj,k = Mortj,k/Popj,k), errors in population estimation also directly affect the BMR. 
Similarly, as the BMR is constant at country level, its distribution does not reflect socio-economic differences 
between rural and urban population, which could be significant (Brochu et al., 2011; Zimmer & Kwong, 2004).

As the final term in Equation 2, the attributable fraction is affected by two fundamental uncertainties. The first 
one is associated with the pollutant distribution X (x, y), while the second relates to the statistical uncertainties in 
the formulation of the ERF. It is usually assumed that the pollutants' distributions contain no errors, as they are 
empirically based on observations, although this is not correct, because observations are subject to measurement 
errors. Furthermore, global data set of pollutants are to some degree augmented by numerical modeling which 
intrinsically brings additional uncertainties in the estimation. Uncertainties in X (x, y) could also arise through 
an overly coarse spatial resolution of the data set to effectively resolve pollutants' spatio-temporal gradients, 
resulting in an underestimation of the effective pollutant concentration. Here we note that secondary pollutants 
that do not have a very short lifetime, that is, most of PM2.5 and O3, do not exhibit a strong spatial gradients as 
they are mixed during formation in the atmosphere, while short-lived pollutants (with lifetime in order of hours) 
such as NO2 (Liu et al., 2016) are subject to strong gradients that need to be represented at relatively high reso-
lution. Furthermore, the process used for deriving X (x, y) could be inadequate for certain locations or areas, or 
the original data set could simply lack the necessary information (e.g., satellite observations masked by cloud 
presence, lack of in-situ measurements). Each pollutant's distribution data set has therefore a unique fingerprint, 
and the error evaluation requires tedious and hard to reproduce evaluation work. A lower limit for the NSE for 
this parameter can be taken from the work of van Donkelaar et al. (2021), who suggested an NSE in the range of 
∼3% at the global level, but with higher values at regional scales (up to 32% in the southern Sub-Saharan Africa 
region). The expected NSE for data from the global circulation model alone, however, should be higher and at 
least of the order of 10% (Crippa et al., 2019; Pozzer et al., 2021).

Finally, the uncertainties from the formulation of ERFs must be taken into account. These uncertainties are asso-
ciated with (a) the number of cohort studies used as well as the functional shape assumed, (b) the use of cohort 
studies only from specific regions (namely U.S./Europe/China), and (c) the different aerosol properties when only 
the PM2.5 metric is used (e.g., composition and distribution, see Sections 5.1 and 5.2). The ERFs also intrinsically 
include the uncertainties in the low concentration threshold, below which no effect from pollution is expected, as 
these thresholds are mathematically derived once the ERFs are estimated (i.e., pollutant concentration that gives 
hazard ratios equal or below 1). Due to their mathematical nature, all the ERFs in the literature present a confi-
dence level interval from which the NSE can be calculated. In addition, the NSE depends on the pollutant level 
and increases at higher concentrations. The reason is the lack of cohort studies at high concentration levels, which 
does not constrain the ERF. To estimate the uncertainties associated with the AF coefficient, the NSE values have 
been estimated at 32 μgm −3 for PM2.5 and 63.4 ppb for O3, representing the population weighted annual average 
exposure for these pollutants for the year 2016 (Brauer et al., 2016); these values have been corroborated by more 
recent analysis for fine particulate matter (van Donkelaar et al., 2021). Here, we focus on the NSE for the GEMM 
formulation, as it applies the largest number of cohort studies, therefore representing a lower limit for the NSE. 
The GEMM AF presents a maximum NSE between all age classes of 7%, 4%, 9%, 8%, 18%, and 3% for LC, IHD, 
CEV, COPD, ALRI and NCD, respectively. For ozone, the LI ERF with a coefficient from Cohen et al. (2017) has 
an NSE of 41% for COPD. It must however be stressed that, in contrast to the GEMM and IER, the NSE of the AF 
associated to LI and LL decreases with increasing pollutant concentrations. This is due to the particular construc-
tion of the LI function, where the NSE grows at a slower pace than the average estimates. Of particular interest 
are the uncertainties associated with the recent “Penalized spline mode” estimation (Vodonos et al., 2018): this 
estimation of the RR derivative presents low uncertainties at 15 μgm −3 (with an NSE of ∼3%), but much larger 
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NSE values for higher concentrations (with NSE higher than 100%), reflect-
ing also the large uncertainties associated with the lack of cohort studies at 
PM2.5 concentrations above 40 μgm −3. These uncertainties are reflected in 
the large NSE value (about 160%) in the global estimates obtained by Vohra 
et al. (2021), where this ERF was adopted even though no other source of 
uncertainties was included in the confidence level assessment. The very large 
statistical uncertainties for this ERF (Vodonos et al., 2018) are biologically 
implausible as they imply a possible beneficial effect of air pollution at high 
concentrations.

In summary, the largest uncertainties arise from the AF (combination of ERF 
and pollutant concentration uncertainties) and the BMR, both of which have 
NSEs in the range of ∼10% at the global scale and potentially higher in some 
regions, especially those where epidemiological studies are lacking, while 
the population data have significantly lower uncertainties.

Not all studies published so far have explicitly stated the different sources 
of uncertainties. In most cases it is somewhat unclear how these have been 
estimated which could be by direct estimation or via Monte-Carlo approach. 
A direct estimation of the errors via propagation of uncertainties is chal-
lenging from the mathematical point of view: as most of the datasets used 
tend to correlate with each other and are thus not statistically independent 
(e.g., population density is correlated with pollution concentration), the 
resulting uncertainty propagation function contains also non-negligible 
second-order terms.

In Figure  4, the NSE for the different studies is presented. Despite the growing number of epidemiological 
studies, as well as improvements in availability of the ancillary data, in the last decades the reported relative 
uncertainties have been more or less constant or have even slightly increased, with the GBD reports systemati-
cally suggesting a NSE of at least ∼8%, and with all other studies indicating higher uncertainty. These reported 
uncertainties are often independent from the health outcome investigated, as NCD estimates present similar NSE 
as the estimates based on the sum of the typical five disease categories (R. Burnett et al., 2018).

In the last decades, tremendous progress has been made in quantifying the relationship between air pollution and 
the associated health impacts. The knowledge in the global estimates has been improving largely by including an 
increasing number of different health outcomes as well as improved estimations of pollution levels around the 
world. Nevertheless, the precision of the estimations has not improved significantly, with a relative uncertainty 
which is at least of 10% and without any substantial reduction in the last decades.

4.4.  Source Apportionment

An accurate and precise estimation of the health burden due to outdoor air pollution is essential in the context of 
policy making, as it can motivate and evaluate environmental policies. To further optimize the regulation and aim 
at the most important pollutants, it is important also to know the sources of atmospheric pollution, that is, to know 
which and how each anthropogenic activity (or natural emissions) contributes to air pollution.

Source apportionment is a technique that informs about the source sectors (e.g., transportation, industry, resi-
dential, natural) that contribute toward a pollutant of interest. Source apportionment techniques help to explicitly 
identify region specific sources of pollution and also help in designing region specific action plans and assessing 
effectiveness of abatement measures. There are two methods (Hopke et al., 2020; J. Lelieveld et al., 2015; Thunis 
et al., 2019) for assessing sources of air pollutants: (a) top-down techniques that use in-situ measurement data and 
trace the share of sources contributing at a measurement site, and (b) bottom-up techniques that associate specific 
activity data with emission estimates and then develop and use chemical transport models or chemistry general 
circulation models to arrive at concentrations. These methods, though distinct, when operated in conjunction 
can serve as an important tool for identifying major sources of PM2.5 and thus support air quality management 
decisions. Both of these approaches help in reconstructing the atmospheric concentration of pollutants associ-
ated with the different emission sources. However, while top-down techniques can only inform about sources of 

Figure 4.  Normalized Standard Error (NSE) in (%) for PM2.5 mortality 
estimated by the studies included in this review. The x-axis shows the 
publication year. Colors and symbols are the same as in Figure 1.
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a pollutant of interest at a single point in space at a given time, bottom-up studies can inform about sources by 
broader geography and at multiple points in space at a given time.

Table 3 lists the five global studies that associated the exposure to ambient PM2.5 and related excess deaths to 
anthropogenic and natural sources (S. Chowdhury et al., 2022; J. Lelieveld et al., 2015; J. Lelieveld, Klingmüller, 
Pozzer, Burnett, et al., 2019; McDuffie et al., 2021; Weagle et al., 2018). Studies that attribute only anthropogenic 
PM2.5 without considering the natural sources (Crippa et al., 2019; Silva, Adelman, et al., 2016; Vohra et al., 2021) 
were excluded from the table. Anthropogenic sources include contributions from activities such as the burning 
of fossil and bio fuels, waste incineration and agricultural activities, while natural sources includes for example, 
biomass burning (wildfires), natural vegetation emissions, as well as dust and sea salt particles. These five global 
studies report 62%–79% and 21%–38% of the total ambient PM2.5 exposure to be of anthropogenic and natural 
origin, respectively. Such large range in the reported contributions may be associated with the input data set, 
emission inventories and model configuration used in these studies. It should be noted that these studies generally 
apportion the exposure to multiple anthropogenic sources (industry, residential, power generation, agriculture, 
waste incineration, transportation, shipping and other minor sources) and natural sources (desert dust, sea salt), 
however to simplify the representation in this review, we lump the anthropogenic and natural sources reported in 
these studies. The global studies also inform about the sources by countries and regions, however, well designed 
regional source apportionment studies (Reddington et al., 2019; Thunis et al., 2018; Upadhyay et al., 2018) are 
better adept for such information.

5.  Outlook
The uncertainties thus far discussed are the so-called “statistical or aleatoric uncertainties,” which are derived 
from the uncertainties associated with the original data and/or mathematical elaboration of such data, and define 
the precision of the mortality estimates. An additional source of uncertainty should be acknowledged, that is, the 
“systematic or epistemic uncertainties,” which represent the accuracy of the estimates. These uncertainties arise 
from our incomplete understanding of the processes involved and the consequent potential misrepresentation in 
mortality estimates. For example, additional health outcomes are included in the estimates when enough epide-
miological studies are available to quantify their relationship with air pollution, hence increasing our accuracy. 
Epidemiological studies are fundamental for estimating exposure-response functions, but conversely are the main 
cause of uncertainty in global estimates of mortality attributable to outdoor pollution. The impact at lowest/high-
est extremes of PM2.5 concentration distribution remains largely uncertain, either by the strong sensitivity (at low 
concentrations) or by lack of data (at high concentrations).

Nevertheless, cohort studies rely on the data available from observations, which may only partially characterize 
the pollutants (especially true for the complex aerosol phase). In this context, we point to possible future research 
directions and the different methodologies that can be used to pursue links between aerosol components and 
health outcomes, including sophisticated machine learning techniques, which could possibly help to achieve 

Table 3 
Global Source Apportionment Studies

Study

Study characteristics Source contribution

Year 
reported Model or observation Emission inventory

Anthropogenic 
sources

Natural 
and 

other 
sources

J. Lelieveld et al. (2015) 2010 EMAC (Jöckel et al., 2010) EDGAR (Centre et al., 2010) 77 23

Weagle et al. (2018) 2014 GEOS-Chem (Bey et al., 2001), 
SPARTAN (Snider et al., 2016)

EDGAR (Crippa et al., 2018), MIX 
(M. Li et al., 2017)

71 29

J. Lelieveld, Klingmüller, Pozzer, 
Burnett, et al. (2019)

2015 EMAC (Jöckel et al., 2010) EDGAR (Crippa et al., 2018) 63 37

McDuffie et al. (2021) 2019 GEOS-Chem (Bey et al., 2001) CEDS (McDuffie et al., 2020) 79 21

S. Chowdhury et al. (2022) 2015 EMAC (Jöckel et al., 2010) CEDS (Hoesly et al., 2018) 62 (73) a 38 (27) a

 aThe numbers in parenthesis indicate the source contributions considering anthropogenic organic aerosols to be twice more toxic compared to other aerosols.
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new insights and to significantly reduce the uncertainties associated with mortality estimates (Hüllermeier & 
Waegeman, 2021).

5.1.  Aerosol Particle Distribution

Particulate matter in the atmosphere is composed of aerosols of different sizes, ranging from a few nanometers 
to many micrometers in diameter, of which only the smaller ones are considered relevant for health. The aero-
sol distribution is therefore not only described by the aerosol composition, but also by the number of particles 
found at a certain size (i.e., aerosol diameter). In Figure 5, two aerosol size distributions, with the same particle 
composition and density, are presented. Although both have the same total mass of PM2.5, their distribution is 
rather different. In one case (left), the aerosol distribution reveals a large number of particles of small sizes, while 
in the other case (right), less particles are present but with larger sizes, more typical for a physico-chemically 
“aged” aerosol. Both distributions show the same PM2.5 mass of 32 μgm −3 and therefore would have the same 
estimated health impact according to common practice. Nevertheless, it has been shown that smaller particles 
have a greater potential to penetrate deeply into the lungs (Hong & Jee, 2020; Schraufnagel, 2020; Schraufnagel 
et al., 2019), potentially having larger health effects. This has been investigated in detail by the Health Effects 
Institute Review Panel on Ultrafine Particles, which concluded (on Ultrafine Particles, 2013) that, for the time 
being, compelling evidence that ultrafine particle (UFP) exposure (i.e., exposure to particle with an aerodynamic 
diameter below 0.1 μm) can account in substantial ways to the adverse effects that have been associated with other 
ambient pollutants such as PM2.5 is lacking. Nevertheless, in the same study it is mentioned that health effects of 
UFP cannot be ruled out, due “to underlying deficiencies in exposure data, to numerous challenges in comparing 
and synthesizing results of existing studies, and to the inherent complexity of the task that scientists have set out 
to accomplish.” The importance of the aerosol size on health impacts should therefore be investigated in greater 
detail in epidemiological studies, which also pose the challenge of the development a ultrafine particle exposure 
assessment across larger areas as well as detailed multipollutant concentration exposure to evaluate independent 
effects.

Figure 5.  Two aerosol distributions with the same PM2.5 mass. The blue curve represents the number density of an aerosol distribution, the green curve represents the 
mass density of the distribution in the same panel. The PM2.5 is estimated as the integral of the green curve between zero and the 2.5 μm, the last limit depicted with the 
red line. The median for the number and mass are also presented. Please note the different vertical axis for the green and blue curves. The aerosol density is identical in 
both distributions. The total mass of PM2.5 is 32 μgm −3, equivalent to the global population weighted annual average exposure for the year 2016 (Brauer et al., 2016; van 
Donkelaar et al., 2021).
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A possible outcome is to augment the exposure-response function with the aerosol size, or, alternatively, the 
aerosol number concentration, which is dominated by the smaller particles, resulting in a 2-variable function. 
Input data of fine particulates would consequently need to be extended, by including information on the aerosol 
size distribution.

5.2.  Aerosol Composition

Although the exposure-response functions consider PM2.5 mass, its composition can vary greatly between differ-
ent regions (S. Chowdhury et al., 2022; Weagle et al., 2018). It is important, therefore, to investigate the impact 
of different substances present in aerosols on human health, Evidence suggests that anthropogenic secondary 
aerosols (such as sulfates and nitrates), black carbon and primary organic aerosols, are main causes of respiratory 
and cardiovascular diseases, due to the induced oxidative stress and inflammatory response (Bates et al., 2019; 
S. Chowdhury et al., 2022; Daellenbach et al., 2020; Huang et al., 2012; Lippmann et al., 2013; Niranjan & 
Thakur, 2017; Park et al., 2018; Weichenthal et al., 2016). However, no definitive conclusions have thus far been 
reached, and more research in this direction is indeed needed to clarify the health burden of aerosol components 
as advocated already in many publications (Kelly & Fussell, 2012; J. Lelieveld et al., 2015; Rohr & Wyzga, 2012).

On the other hand, the ability of PM2.5 to generate Reactive Oxygen Species (ROS) generation in epithelial fluid 
has been proposed as a metric to calculate the toxicity of PM2.5 particles (Crobeddu et al., 2017; WHO, 2007). 
Notable progress has been made in the last years in connecting fine particulate composition to ROS (T. Fang 
et al., 2019; S. Lelieveld et al., 2021), based on mechanistic approaches. If a clear link between health status 
and ROS could be established (Auten & Davis, 2009; Shields et al., 2021), then the impact of different aerosol 
components could be assessed, as it is possible to correlate the different components with ROS production (P. H. 
Chowdhury et al., 2019; Zhou et al., 2019) in the human body. This seems to be a promising way forward, and 
may clarify the processes that lead pollution to have adverse health effects, improving our understanding. Simi-
larly to the particle-distribution issue, to have a global estimates based on differential toxicity for different aerosol 
components requires the development of a global exposure distribution for each of them, which is challenging 
and associated with large uncertainties. Therefore, any progress in this direction would not directly translate in an 
improvement of the precision in the global estimates.

It must be stressed that a possible link between fine particulate composition and health outcomes is very impor-
tant for supporting policy makers decisions. In fact, Pai et al. (2022) showed that most countries are not able to 
meet the new WHO air quality guidelines for PM2.5 of 5 μgm −3 even without any anthropogenic emissions. It is 
therefore important to know what is the realistic exposure reduction scenario with the largest health advantage.

6.  Conclusions
In this work, we reviewed and compared the global estimates of excess mortality attributable to outdoor air 
pollution in the recent literature (past two decades). The methodologies adopted by different studies have been 
explained, and we have described the state-of-the-art in excess mortality estimates, based on a combination of 
recent developments in epidemiology and atmospheric chemistry. It has been shown that the mortality attributa-
ble to PM2.5 is generally estimated to be about a factor of 10 higher than that attributable to O3.

The comparison between the different estimates reveals that the formulation of exposure response functions is 
responsible for the main differences between recent studies, followed by the type and number of health outcomes 
that are included in the calculations.

We showed that in the last decades a large number of publications considerably improved our understanding or 
the air pollution-health link, therefore strongly increasing the accuracy of our global estimates. Nevertheless, 
the precision associated with global estimates of excess mortality attributable to air pollution has not improved, 
amounting to at least 10% of the estimated mean values. The GBD reports, in particular, can be considered to 
present the up to date estimations, due to their regular improvements in all the data needed for the estimates.

Potential research directions which could improve our understanding of the relationship between fine particulate 
matter and human health include improved formulation of the ERF based not only on PM2.5 mass, but rather 
on size distribution, as well a possible mechanistic link of air pollution composition to ROS in the epithelial 
fluid. This would require more sophisticated measurement networks, where not only the gravimetric mass of 
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the fine particulate matter is measured but also its composition, the size distribution, and number concentration. 
The detailed measurements thus obtained could then be used in epidemiological studies to further improve the 
ERFs. An obvious final recommendation is to improve and extend measurement networks and perform dedicated 
epidemiological studies in low- and middle-income countries, which have so far been inadequately represented 
in global burden of disease studies.

Finally, despite the methodological differences present in the literature and here investigated, all studies point to 
a very large health burden from ambient air pollution, which remains to be one of the most important causes of 
death worldwide.
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