Minor-II Exam for EEL306 (II-Sem 2013-14)

Time: 1 Hour

Max. Marks: 25

Instructor: Dr. Saif Khan Mohammed, saifkm@ee.iitd.ac.in, 011-26591067 Do not turn over to the next page till you are instructed to do so.

Important Instructions:

- 1) Write your response in the space provided after each question on this question paper.
- 2) Show all steps leading to the final answer.
- 3) There will be partial grading for intermediate steps leading to the final answer.
- 4) You need not prove/derive any result which has been derived in class.
- 5) Write legibly and clearly state any assumptions made.
- 6) Extra sheets for rough work must not be submitted for evaluation.
- 7) You are allowed to use a sheet of paper containing important formulas.
- 8) Calculators with clear memory are allowed.
- 9) Switch off your mobile phone and place it in your bag.
- 10) Keep your ID cards on the desk for the invigilator to examine.

Student Name:

Student Entry No:

Student Signature:

Marks Obtained:

- 1) (7 Marks) A zero mean real-valued strictly stationary white Gaussian random process N(t) is input to a linear time-invariant filter having real-valued impulse response h(t). The output of the filter is denoted by X(t). Assume the power spectral density of N(t) to be $S_N(f) = N_0/2$.
 - a) (4 Marks) Derive an expression for the autocorrelation function $R_X(\tau) \stackrel{\Delta}{=} \mathbb{E}[X(t)X(t-\tau)]$ of the output random process X(t).
 - b) (3 Marks) Assuming that h(t) = 2B Sinc(2Bt), for what values of $(t_2 t_1)$ are $X(t_1)$ and $X(t_2)$ statistically independent? $(Sinc(x) \stackrel{\Delta}{=} \frac{\sin(\pi x)}{\pi x})$

2) (5 Marks) A strictly stationary real-valued Gaussian random process X(t) has a mean value of $\mathbb{E}[X(t)] = 2$ and power spectral density $S_X(f)$.

Show that $\int_{-\infty}^{\infty} S_X(f) df \ge 4.$

Determine the probability density function of a random variable obtained by observing X(t) at some time t_k .

- 3) (9 Marks) Consider the DSB-SC transmission of a real-valued baseband message m(t) (m(t) is band-limited to [-B, B]). The transmitted DSB-SC signal is given by $s(t) = m(t) \sin(2\pi f_c t)$. Let the received passband signal be $r(t) = s(t \tau)$ (τ is the constant propagation delay). Assume a coherent receiver which uses a phase locked loop (PLL) to acquire the phase of the received carrier during the synchronization phase (the transmitted signal during the synchronization phase is $s(t) = \sin(2\pi f_c t)$).
 - a) (1 Mark) Give an expression for the output of the voltage controlled oscillator (inside the ideal PLL) at the end of the synchronization phase. (no need to derive it)
 - b) (4 Marks) Draw the schematic/block diagram for the coherent demodulator which uses the carrier signal acquired during the synchronization phase for demodulation.
 - c) (3 Marks) Describe the demodulation process using mathematical equations.
 - d) (1 Mark) For a given B, what is the lowest possible carrier frequency f_c for which m(t) can be recovered perfectly by the coherent demodulator ?

4) (4 Marks) Consider a real-valued baseband message signal m(t) band-limited to [-W, W]. Let c(t) be a periodic square wave having period T_p i.e., $c(t) = c(t+T_p)$. Further it is given that c(t) = 1 for $0 \le t < T_p/2$ and c(t) = -1 for $T_p/2 \le t < T_p$.

The product signal x(t) = m(t)c(t) is passed through an ideal real-valued bandpass filter whose passband is $[f_p - W, f_p + W]$ where $f_p \stackrel{\Delta}{=} \frac{1}{T_p}$ (the frequency response of this filter is 1 for frequencies in the passband and is zero elsewhere). Let the output of this filter be s(t).

Assuming $f_p > 2W$, derive an expression for s(t). Describe the significance of your result.