AL ANALYSIS 4.5. Non-Periodic Functions; Fourier Integrals
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However, just as in the case of Fourier series the mere existence of p(f) does
ot ensure that the right-hand side of (4.5.7) will converge to X (¢). For this
to hold we require further conditions on the “good behaviour”’ of X (t), such
an interval containing the point
§=t It may then be shown (Titchmarsh (1948)) that the right-hand side of
0)}, or more simply, converges to
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