iable obtained by
v distribution. The

188, Gaussian pri
iginal narrowband
tted in terms of ;
of these represen
nt chapters of th

) real random pro.
lonly éncountere
hich arises in
Section 5.11

.- The noisiness of a recejver may also be
relationship between (he noise figure
Haykin and Moher (2005).

. Discussion of both analytical and statistic

found in Parsons ( 1992)

1. The statistical characterization

the first two moments, mean and autocorrelation funct

tion) of the pertinent random process. However.

a nonlinear system, valuable information is contained in higher-

output process. The parameters used Lo characterize h

are called cumulanis: their multidimensional Fourier transforms

discussion of higher-order cumulants and polyspectr:

Brillinger (1965) and Nikias and Raghuveer ( 1987).

measured in terms of the so-called noise figure. The
and the equivalent noige temperature may be found in
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al techniques of characterizing propagation may be
of communication Systems presented in this book s confined to
ion (equivalently, autocovariance func-
when a random process is transmitted through
order moments of the resulting
igher-order moments in the time domain
are called polyspectra. For a
a and their estimation, see the papers by

Viener and A, I.
s analysis (deljy-
that Einstein had
tof a time serieg
S paper is repro-
ue also contains
inal work.
Marple (1987),

ction of papers

this reason it g :
irmed theoreti-

Show that the characteristic function of a Gaussian random  (b)
variable X of mean {ty and variance (Ii. is

Using the result of part (a), show that the nih central mo- -
ment of this Gaussian random variable ig lance o~. What is the probability density fu

B0y = { 153550

5.2 A Gaussian-distributed random variable X of zero mean
and variance oy is transformed by a piecewise-linear rectifier
characterized by the input-output relation (see Figure P5.1):

(a)  Explain the physical reasons for the functional form of this
result.

Determine the value of the constant £ by which the delta
function §(y) is weighted.

Px(v) = exp (jupy — vioy) 5.3 A binary signal having the value of +1 s detected in the
presence of additive white Gaussian noise of zero mean and var-
nction of the signal ob-
served at the input to the detector? Derive an expression for the

probability that the observed signal is larger than a specified
threshold

for n even
0 for n odd

-4 Consider a random process X(t) defined by
X(t) = sin(2nfr)

in which the frequency £ is a random variable uniformly distriby-
ted over the interval (0,W). Show that X() is nonstationary. Hint:
Examine specific sample functions of the random process X(z) for
the frequency f = W/4, W2, and W, say.

X=0
X <0.

fl
>

5.5 Fora complex random process Z(z), define the autocorrela-
tion function as

Rz(t) =E[Z*()Z(t + 1))

where * represents complex conjugation. Derive the properties of

0 this complex autocorrelation corresponding to Egs. (5.64), (5.65).
and (5.67).

Figure P5.2

5.6 For the complex random process Z(1) = Z,(1) + JZp(t)
where Z,(t) and Zg(?) are real-valued random processes given by

Z(t) = A cos(2nfit + 0,)

sity function of the new random variable Y is

and
Zy() = A cos(2nfot + 6,)

where 6, and 0, are uniformly distributed over [—m,x]. What is
the autocorrelation of Z(1)? Suppose f; = £,? Suppose 6, = 6§, = g9




v
Let X and Y be statistically independent Gaussian-distriby-

with zero mean and unit variance.
Define the Gaussian process

Z(t) = X cos(2nt) + Y sin(2nz)
(@) Determine the Jjoint probability density function of the ran-
dom variables Z(1,) and Z(t,) obtained by observing Z() at

times #; and 1,, respectively.
(b) Is the process Z(1) stationary? Why?

5.8 Prove the following two properties of the autocorrelation
function Rx(t) of a random process X(t):

(@) If X(r) contains a dc component equal to A, then Ry(t) will
contain a constant component equal to A2

If X(r) contains a sinusoidal component, then Ry(t) will also
contain a sinusoidal component of the same frequency.

(b)

5.9 The Square wave x(f) of Figure P5.9 of constant amplitude
A, period Ty, and delay 1, represents the sample function of a ran-
dom process X(f). The delay is random, described by the prob-
ability density function

1 i

1
= “sh=i=-T
fT,,(td)z TU 2 Y Z 2 0

0, otherwise

x(1)

‘—)Jo’d L\ To \J
Figure P5.9

(@) Determine the probability density function of the random

variable X(1,) obtained by observing the random process
X(1) at time k.

(b) Determine the mean and autocorrelation function of X(r)
using ensemble averaging.

(¢) Determine the mean and autocorrelation function of X(2)
using time-averaging.

(d) Establish whether or not X(1) is wide-sense stationary. In

what sense is it ergodic?

binary wave X@):
202

(a)

The autocorrelation function is

A?z+%2(—§>, Ifl<T
RX(T)z AZ
T |tj=7T

(b)  The power spectral density is
2

Se(n)= 5o+

2
% sinc?(£T)

What is the percentage power contained in the dc componen
of the binary wave? ‘

5.11 A random process ¥(z) consists of a dc component of

V/3/2 volts, a periodic component &(1), and a random component.
X(1). The autocorrelation function of ¥(t) is shown in Figure P5.171. :

(@)  What is the average power of the periodic component g(z)?
(b)  What is the average power of the random component X(z)?

Ry(r).
(volts)®

Figure P5.11

.

5.12 Consider a pair of wide-sense stationary random pro-
cesses X(¢) and Y(f). Show that the cross-correlations Ryy(t) an
Ryx(7) of these processes have the following properties:

(a) RXY(T)=RYX(‘T)
(b)  [Ryy(z)] = L[Ry(0) +Ry(0)]

5.13  Consider two linear filters connected in cascade as i
Figure P5.13. Let X(1) be a wide-sense stationary process wi h
autocorrelation function Rx(t). The random process appearing af
the first filter outputis V(t) and that at the second filter output is Y.

(a) Find the autocorrelation fﬁnction of ¥(r). ]
(b) Find the Cross-correlation function Ryy(7) of V(1) and Y1) 3

X(1) Y(r)

Figure P5.13

5.14 A wide-sense stationary random process X(1) is applied
a linear time invarjant filter of impulse response h(z), produci
an output ¥(z).

(a)  Show that the Cross-correlation function Ryx(7) of the outp
Y(#) and the input X(z) is equal to the impulse response A(t);

convolved
input, as sho

Show that
equals

Find the cros
Assuming th
and power sj

Comment or

15  The powe
lown in Figure P.

Determine a
X(1).

What is the ¢
What is the ¢
What sampli
Are the samg

he noise process

shown in F

)Wer spectral den




convolved with the autocorrelation function Ry (7) of the
input, as shown by

. H<r
Ryx(1) = [ h(u)Rx(t — u) du
[f=7 &
3 J
-w
Figure P5.16
ncz(fT)

ny(f) = ij h( T M)R)((T e u) du

;Find the cross-spectral densities Syy ( £) and Sxy(f). 5.17 A random telegraph signal X(r), characterized by the
Assuming that X(r) is a white noise process with zero mean  autocorrelation function
and power spectral density N,/2, show that

Ry (7) = exp( — 2vl1|)

N,

Ryx(1) = =2 (1) ; . : .
2 where v is a constant, is applied to the low-pass RC filter of Figure

P5.17. Determine the power spectral density and autocorrelation

~ Comment on the practical significance of this result. function of the random process at the filter output.

R
5 The power spectral density of a random process X(z) is O_JVW_TQ
wn in Figure P5.15.
Input Output
(§) Determine and sketch the autocorrelation function Ry(7) of T

X(1). O— —0

What is the dc power contained in X(1)? .

What is the ac power contained in X(1)? Flgure P5.17

) What sampling rates will give uncorrelated samples of X()?
Are the samples statistically independent?

Sx(f) 5.18  The output of an oscillator is described by

nary random pro
lations Ry, (7) an, 8(f) X(r) = Acos (2nft — @),

& %
ftties; 1.0 where A is a constant, and fand @ are independent random vari-

ables, The probability density function of @ is defined by
-1— ! 0=<=0=2n
; fo(0) = 2n

n cascade as in o . fo 0, otherwise
Ty process with Figure P5.15 Find the power spectral density of X(¢) in terms of the probability
€SS appearing at :

I density function of the frequency f. What happens to this power
ter output is ¥(z). - spectral density when the frequency f assumes a constant value?

A pair of noise processes n (1) and n,(t) are related by

m(t) = ny (1) cos(2nf.t + 0) = ny (r)sin(2nf.t + 6) x/
‘ : A stationary, Gaussian process X(t) has zero mean and

where Je is a constant, and 6 is the value of a random variable ®  power spectral density Sy(f). Determine the probability density
whose probability density function is defined by function of a random variable obtained by observing the process
G35 e Al & Ao AV\A/{/’(/V\I/E’VV/’ Y 8 ?

; X(z) at some time .
E ) (€
. L 0=0=<2n “? M 060,

i fo(8) = {2n’
f) is applied to 0, otherwise
(1), producing

V@) and Y(r).

> Y(1)

20 A Gaussian process X(f) of zero mean and variance oﬁ is
passed through a full-wave rectifier, which is described by the
input—output relation of Figure P5.20. Show that the probability
density function of the random variable Y(1;), obtained by

. The noise process n,(1) is stationary and its power spectral density
) of the output as shown in Figure P5.16. Find and plot the corresponding
response 4(r) @ Power spectral density of ny(r).
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observing the random
is as follows,

process (1) at the rectifier output at time 7, h(r)

White
noise
-
=
21 2
%*exp(—%), y=0
Jry) = LT 20%
O, y <0 \0 = t 7
Figure P5.23 E
5.24  Consider a white Gaussian nojse -
and power spectral density N,
high-pass RL filter shown in
X

(@) Find the autocorrelati
of the random proces
(b)  What are the mean a

on function and Power spectral dengipft:
S at the outpur of the filter.
nd variance of this output?

Input L Output

where Y(7) is the output. © Al
(a) oW that the mean of ¥(¢) is Rx(0).

(b)” Show that the autocovariance function of ¥(1) is 2R% (7).

22 A Stationary, Gaussian process X(¢) with mean Iy and var-

lance o3 is passed through two linear filters with impulse 5,25 A white noise

w(?) of power spectral density No/2 is
responses /(t) and ho(1), yielding processes ¥(¢) and Z(1), as plied to a Butterworth, low-pass fiiter of order n, whose amplitq
shown in Figure P5.22.

TeSponse is deiinad by

Figure P5.24

(@ Determine the joint probability density function of the ran-
dom variables ¥(#;) and Z(1,).

1
e
[+ /fo) ™2
(b)  What conditions are necessary and sufficient o ensure that D _ . ture
X() and Z(t,) are statistically independent? @ Determine the noise

5.26 The shot-ncise
Stationary., Why?

/ Figure p5.22

5 White Gaussian noise of zero mean and power speci
/ density Ny/2 is applied to the filtering scheme shown in Fig
\MB A stationary, Gaussjan process X(r) with zero mean and  P5.27. The p 1se at the lov/-pass, filter output is denoted by n(z).
pPower spectral density Sy(f) is applied to a linear fijter whose im- é{ f d>
pulse response h()is s

AJ St

' I3 Equat
hown in Figure ps 23. A sample ¥ is taken (@ Find the power specir: Cde?s%/ and’the autocorrelati the ir
T function of n(y), ; comp
f d t the filt tput at ¢ ;
: 9F the rindom process at the filter ou R EnE T (b)  Find the mean and variance of n(1).
(a) Determine the mean and variance of y. (¢) What is the rate at wiich n(t) can be sampled so that the
(b)  What is the probability density function of Y?

sulting samples are ess

entially uncorrelated?
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Low-pass
filter

Output
Hy(f) i

n(r)

ST (A [t 4 5)

(a)

[Ho(f)]
1.0

Process of zere, m
lied to the input of

i

JOWer spectra] den;

the filter.
output?
ary process with zero mean, autocor-

-0 power spectral density § x(f). We are

nd a linear filter with impulse Tresponse A(r), such that
; Iter output is X(¢) when the input is white noise of power
o ctral density N, /2.
3 Determine the condition th

at the impulse response A(f) must
satisfy in order to achieve this requirement.

What is the corresponding condition on the transfer function

H(f) of the filter?

Using the Paley-Wiener criterion (see Section 2.7), find the
requirement on Sx(f) for the filter to be causal,

density No/2 is g

, whose amplity

(8) Find the Power spectral densities of the in
ture components of n(r).
(b) Find their Cross-spectral densities.

-phase and quadra-
for this low-pagg ¢

valent bandwid

Find the probability density function of the e

nvelope of n(r).
What are the mean

Eq. (5.114) j and variance of thig envelope?

(b)

-pass filters

-half that of the narrow-
OWer spectra]

ed by n(r) ) ) .
(@) Equation (5.136), defining the power spectral densities of
tocorrelatiop - the in-phase nojse component n,(f) and quadrature nojse
component ny(r) in terms of the power spectral density of
n(r).
) that the re.

Equation (5113%7), defining the Cross-spectral densities of
’ll(f) and 'lQ(f).

CQ s LW\U’C”/’/ f\)

f(Hz)
=71 o5y 45 7
Figure P5.29
e ST
bt
28
Figure P5.30

wband noise n(t) is Gaussian and its
power spectral density S, ( f) is symmetric about the mid-band
frequency Je- Show that the in-phase and quadrature components
of n(z) are statistically independent.

5.33
(@) A transmitter at position x = 0 emits the signal A cos(2nf,t).
The signal travels at the velocity of light such that a signal
ata point on the x-axis js given by

r(t,x) = A(x)cos [ZRfc (’ - g)]

If the receiver starts at

along the X-axis, what
observed?

The frequencies of the Doppler shift of the reflected paths in
Eq. (5.173) are Pproportio

nal to the angle of radiation relative
to the direction of motion, that is

position x4 and moves at velocity v
Doppler shift in frequency £, is

(b)

./;l =fD cos '//n

where f;, is maximum Doppler shirt. If the multipath
angle y, is uniformly distributed over [—r,x]. Compute
E [exp(j2nf,,r)]. Use this result to prove Eq. (5.174).

5.34 The modified Bessel function of the first kind zero order is |
defined by

1 2n
Ih(x) = o L exp(x cos y) dy




