
EEL319 Digital Signal Processing 
Experiment 3: PN Sequence Generation 

 
Theory: Pseudo-Noise (PN) sequences are commonly used to generate noise that is approximately "white". 
It has applications in scrambling, cryptography, and spread-spectrum communications. It is also commonly 
referred to as the Pseudo-Random Binary Sequence (PRBS). These are very widely used in communication 
standards these days. The qualifier "pseudo" implies that the sequence is not truly random. Actually, it is 
periodic with a (possibly large) period, and exhibits some characteristics of a random white sequence 
within that period. PN sequences are generated by Linear Feedback Shift Registers (LFSR), as shown in the 
following figure: 

 
 
 
In the figure, the output xk is binary (0 or 1), and so are the constants hj, j=0,1,…n, and  ⊕ denotes the XOR 
operation. This means that xk is given by: 
 

xk = h1xk-1⊕……⊕ hnxk-n 
 
Since xk⊕xk=0, it follows from the above that: 
 

xk ⊕ h1xk-1⊕……⊕hnxk-n  =0 
or 
 

h(D)x(D) = 0 
 

where h(D) = 1 ⊕ h1D⊕……⊕ hnDn and D denotes a unit delay (xkDj=xk-j for any j). Note that the  “1” in 
the polynomial does not correspond to a tap.  
 
It is not difficult to see that the output xk will be periodic. However, the dependence of the length of the 
period (which we would like to be as large as possible) on the constants hj, j=1,2,…n is not obvious. We 
can see that the "state" (xk-1 …. xk-n) can assume at most 2 n values. We note the following: 
• If the state of the shift register is all zero at any time, it remains so for all time. We need to ensure that 

this never happens (we start with a non-zero value). 
• If the state ever remains unchanged from one clock cycle to the next, it remains the same forever. 
• The sequence must be periodic (since there are at most 2n -1 states). 
• Since all the all zero state is not allowed, the period of the output sequence can be at most 2n-1. A feed-

back shift register that generates a sequence of this period is said to be of maximal length. 
 

How do we design the feed-back shift register (i.e., hj) so that it is maximal length, keeping the 
hardware (XORs) minimum?  The answer to this question involves the divisibility of 1⊕ Dm by h(D) for 
m<2n-1, and need not concern us here. The following table lists the tap-points (points where hj is 1) for 
registers of various sizes. The first column lists the order n of the register, and the second column lists the 
tap points or h(D) in octal notation.  For example, for a register of size 12, the table lists 10123 in octal or 
1000001010011 in binary which means that  h(D) = 1⊕ D⊕ D4⊕D6⊕D12  (this means that the first, fourth, 
sixth, and the 12th points in the shift register are tapped for XORing).  
  

 
 



 
 
n=2 7 14 42103 26 400000107 
3 13 15 100003 27 1000000047 
4 23 16 210013 28 2000000011 
5 45 17 400011 29 4000000005 
6 103 18 1000201 30 10040000007 
7 211 19 2000047 31 20000000011 
8 435 20 4000011 32 40020000007 
9 1021 21 10000005 33 - 
10 2011 22 20000003 34 - 
11 4005 23 40000041 35 - 
12 10123 24 100000207 36 - 
13 20033 25 200000011   

 
Minimal weight polynomials of order 2 to 32 are listed in the above table. Each entry in the table 

is an octal number for each n in the first column, which when converted to binary specifies the coefficients 
of h(D). The most significant (leftmost) bit hn is 1, and so is the least-significant (right-most) bit h0. .  You 
can find the tap points for larger length shift registers in various sites on the internet (use this hyperlink for 
example) 
 

If you look at any n-length segment of the output, you will find all possible sequences with the 
exception of the all zero sequence. However, when you look at a smaller segment, you will come across all 
possible sequences.  Intuitively therefore, when the register length is large, the sequence is approximately 
"white". Consider for example the case when n=2 and h1=h2=1 implying that both points are tapped so that 
xk=xk-1⊕xk-2. Starting with xk-1=0 and xk-2=1 gives the following sequence of shift register contents: 
(0,1),(1,0),(1,1),(0,1),… Notice that periodicity is three since 22-1=3 and this happens to be the tapping to 
get a maximal length sequence. Note that the shift-register contents are shifted versions of each other and it 
makes no difference which register output is considered the output. 
 
The output of the PN sequence generator is purely deterministic – given the state of the generator, the 
output is uniquely determined for all time. With the zero level mapped to a “-1” to make it an antipodal 
sequences, the autocorrelation of the maximal-length PN sequence is periodic, and its value in one period is 
-1/M except at one location where it is 1 (M is 2n-1). This sequence can be filtered to generate bandlimited 
Gaussian-like noise. 
 
 Experiment: You are asked to design a PN sequence generator of length n. The length n is stored in a 
memory location. . So are the tap points hj (for example, 1 4 6 and 12 may be written in sequential memory 
locations for the example considered above). You can store hj and n in a different format if you like. Try to 
make the program as general as possible, so that it can work for large n.  Program should work for n≤32 at 
least, though I would recommend that you try to make the shift register length larger. How many clock 
cycles does your program take to generate one bit of the output? 
 
Hints: Note that you can rotate/shift through carry bit.  Go through the ROR and ROL instructions. Note 
that you can test for the carry bit in many ways.  It may not be a bad idea to use BCNT instruction. The 
reason is that the number of tap-points is relatively small compared to the register length, and it may be 
wasteful to shift/rotate so many times. Should your counter be in the LSBs or in the MSBs of the 
accumulator? Note that you are not doing arithmetic, but doing logical operations. For this reason, you 
might want to turn off sign extension (BCLR SXM).  

https://spreadsheets.google.com/ccc?key=0AvYtZsho-JTldFRYZnJLRFFaSWtUcVNXc1Y3M2VWd1E&hl=en#gid=0

