Classical Physics

1) precise trajectories for particles - simultaneous specification of position and momentum
2) any amount of energy can be exchanged - implies the various modes of motion (translational, vibrational, rotational) can have continuous energies

Light

electromagnetic field
frequency v, wavelength λ, speed in vacuum $c=3 \times 10^{8} \mathrm{~ms}^{-1}$.

$$
\lambda v=c
$$

wavenumber, $\bar{v}=\frac{v}{c}=\frac{1}{\lambda}$

Black Body

An object capable of emitting/absorbing all frequencies of radiation uniformly

Figure 1.1: Representation of a blackbody

=1
Figure 1.2: Change in the emission maxima from the blackbody as a function of temperature

Rayleigh-Jeans Law

Classical viewpoint - electromagnetic field is a collection of oscillators of all frequencies
Equipartition principle - average energy of each oscillator $=k T$

$$
d E=\rho d \lambda \quad \rho=8 \pi k T / \lambda^{4}
$$

Ultraviolet catastrophe

As wavelength decreases, the energy density increases to infinity

Planck's hypothesis

All possible frequencies are not allowed - energy of each oscillator is restricted to discrete values
Quantization, $E=n h v \quad n=0,1,2 \ldots$ where h is the Planck constant $\left(=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)$

$$
d E=\rho d \lambda \quad \rho=\frac{8 \pi h c}{\lambda^{5}\left(e^{h c / \lambda k T}-1\right)}
$$

Short wavelengths: $h c / \lambda k T \gg 1 \therefore e^{h c / \lambda k T} \rightarrow \infty$ faster than $\lambda^{5} \rightarrow \infty$. So no UV catastrophe! The hypothesis fits well with the observed data. (Actually the value of h was determined by fitting)

Why this works?

Classical - heat black body - all oscillators with all frequencies excited - the excitation of high frequencies leads to UV catastrophe

Planck - oscillators can be excited only if energy $h v$ is available. Higher frequencies implies higher energies which is too large to supply by heating the walls of the blackbody

Heat Capacities

Dulong and Petit Law: Measured value for solids $=25 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Mean energy of an atom as it oscillates about its mean position $=k T$ for each direction (equipartiion principle). This gives a total of $3 k T$ for the three directions. For a mole, $U_{m}=3 R T$

$$
C_{V . m}=\left(\frac{\partial U_{m}}{\partial T}\right)_{V}=3 R=24.9 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

At lower temperatures, molar heat capacities are lower than $3 R$.

Einstein's explanation (1905): Each atom oscillates about its equilibrium position with frequency ν. Used Planck's hypothesis - energy of oscillation equals $n h v$. This gives,

$$
U_{m}=\frac{3 N_{A} h v}{e^{h v / k T-1}}
$$

Differentiate w.r.t. T to get $C_{V, m}=3 R f \quad f=\left(\frac{\theta_{E}}{T}\right)^{2}\left(\frac{e^{\theta_{E} / 2 T}}{e^{\theta_{E} / T-1}}\right)^{2}$
Einstein temperature $\theta_{E}=h v / k$ corresponds to the frequency of oscillation.
At high temperatures $\left(\theta_{E} \ll T\right)$, expand $f=\left(\frac{\theta_{E}}{T}\right)^{2}\left\{\frac{1+\theta_{E} / 2 T+\ldots}{\left(1+\theta_{E} / T+\cdots\right)-1}\right\}^{2} \approx 1$ ignoring the higher terms which gives the high temperature result $C_{V, m}=3 R$

At low temperatures $\left.\theta_{E} \gg T\right), f \approx\left(\frac{\theta_{E}}{T}\right)^{2}\left(\frac{e^{\theta_{E} / 2 T}}{e^{\theta_{E} / T}}\right)^{2}=\left(\frac{\theta_{E}}{T}\right)^{2} e^{-\theta_{E} / T} \quad$ Exponential decays faster to zero than $1 / T$ goes to infinity.

Reason: At low temperatures fewer atoms have the energy to oscillate.

Figure 1.3: Temperature dependence of heat capacities

Further: All atoms do not oscillate with the same frequency. There is a distribution of frequencies ranging between 0 to v_{D}. Read Debye's formula for the heat capacities.

Atomic and Molecular Spectra

Figure 1.4: Molecular spectrum of SO_{2}.

Figure 1.5: Energy levels in a molecule

Radiation is absorbed/emitted in discrete steps and not continuously. This suggests the energy levels in an atom/molecule are quantized. The frequency of radiation absorbed/emitted is given by the Bohr frequency condition

$$
\Delta E=h v
$$

Wave-particle duality

Atomic and molecular spectra show that EM radiation of frequency v can possess only the energies $0, h v, 2 h v \ldots$ suggesting the radiation is composed to $0,1,2 \ldots$ number of particles called photons.

Photoelectric effect

Ejection of electrons from a metal surface upon irradiation with light

1) No electrons are ejected unless the frequency of radiation is higher than a threshold value (work function). The intensity of radiation does not matter
2) The K.E. of ejected electron varies linearly with the frequency of the light used. It is independent of the intensity
3) All that the intensity does is to change the number of electrons ejected, i.e. the current

Figure 1.7: The photoelectric effect

Electron collides with a particle carrying sufficient energy required to eject it.

$$
K E=\frac{1}{2} m v_{e}^{2}=h v-\phi
$$

Wave character of particles:

Davisson and Germer (1952) - diffraction of electrons by a crystal. The basis of TEM and SEM. Diffraction requires constructive and destructive interference of waves. Hence, particles must possess wavelike character.
de Broglie relationship (1924): $\lambda=h / p$. A very fundamental statement.

Hydrogen Spectra

Figure 1.6: Emission spectrum of hydrogen atom on a log scale

Figure 1.7: Atomic interpretation of the hydrogen spectrum

Rydberg Formula:

$$
\bar{v}=\frac{1}{\lambda}=109680\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \mathrm{cm}^{-1} \quad\left(n_{2}>n_{1}\right)
$$

Bohr Theory for H-atom: Electron revolving around the nucleus
Coulomb's Law $f=e^{2} / 4 \pi \epsilon_{0} r^{2}$

$$
\epsilon_{0}=8.85419 \times 10^{-12} \mathrm{C}^{2} \cdot \mathrm{~N}^{-1} \cdot \mathrm{~m}^{-2}
$$

Centrifugal force $f=m_{e} v^{2} / r$
Bohr's assumption - integral wavelengths fit the circular orbit for constructive interference

$$
2 \pi r=n \lambda
$$

which, on using the de Broglie equation gives

6 | IIT Delhi - CML 100:1 - The shortfalls of classical mechanics

$$
m_{e} v r=\frac{n h}{2 \pi}=n \hbar
$$

Equate the two forces and substitute the above expression for the first Bohr radius, a_{0}

$$
a_{0}=\frac{\epsilon_{0} h^{2} n^{2}}{\pi m_{e} e^{2}}=\frac{4 \pi \epsilon_{0} \hbar^{2} n^{2}}{m_{e} e^{2}}=\frac{4 \pi\left(8.85419 \times 10^{-12} \mathrm{C}^{2} \cdot \mathrm{~N}^{-1} \cdot \mathrm{~m}^{2}\right)\left(1.055 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)^{2}}{\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(1.6022 \times 10^{-19} \mathrm{C}\right)^{2}}=52.92 \mathrm{pm}
$$

Total energy of the electron $=\mathrm{KE}+\mathrm{PE}=\frac{1}{2} m_{e} v^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r}$
Using the above equations, $E=-\frac{e^{2}}{8 \pi \epsilon_{0} r}$
And substituting for $r, E_{n}=-\frac{m_{e} e^{4}}{8 \epsilon_{0}^{2} h^{2}} \frac{1}{n^{2}}$
And transitions between two states n_{1} and n_{2} will be given by

$$
\Delta E=\frac{m_{e} e^{4}}{8 \epsilon_{0}^{2} h^{2}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)=h v
$$

or

$$
\bar{v}=\frac{m_{e} e^{4}}{8 \epsilon_{0}^{2} c h^{3}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

and the Rydberg constant R_{∞} is given by $\frac{m_{e} e^{4}}{8 \epsilon_{0}^{2} c h^{3}}$

