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Variation Method 

Variation principle 

 
∫ 𝜙∗𝐻̂𝜙 𝑑𝜏

∫ 𝜙∗𝜙 𝑑𝜏
≥ 𝐸0, where 𝜙 is any well-behaved function that satisfies the boundary conditions of the 

problem. This is because the wavefunction 𝜙 can be expanded in the basis set of the eigenfunctions 

of the problem, i.e. 𝜙 =  ∑ 𝑎𝑘𝜓𝑘𝑘  

 

We can choose the trial wavefunction such that it depends upon some parameters 𝛼, 𝛽, 𝛾 …These 

are the variational parameters. 𝐸𝜙(𝛼, 𝛽, 𝛾 … ) ≥ 𝐸0. Vary them to minimize the value of 𝐸𝜙. 
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𝐻̂𝐻(𝑗) is the Hamiltonian operator for a single electron around a He nucleus 

𝐻̂𝐻(𝑗)𝜓𝐻(𝑟𝑗, 𝜃𝑗, 𝜙𝑗) = 𝐸𝑗𝜓𝐻(𝑟𝑗, 𝜃𝑗, 𝜙𝑗)𝜓𝐻(𝑟𝑗, 𝜃𝑗, 𝜙𝑗)      𝑗 = 1 and 2 

𝐸𝑗 = − 
𝑍2𝑚𝑒𝑒4

32𝜋2𝜀0
2ℏ2𝑛𝑗
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Using 𝑍 = 2, GS energy = 8𝐸𝑗 = 4 
𝑚𝑒𝑒4

16 𝜋2𝜀0
2ℏ2𝑛𝑗

2 = 4 Hartree = 108.8 eV  

Experimental value is −2.9033 Hartree. Horrible!! 

Ignoring the interelectronic repulsion term, the Hamiltonian is separable and the GS wavefunction is  

𝜙0(𝒓𝟏, 𝒓𝟐) = 𝜓(𝒓𝟏)𝜓(𝒓𝟐) 

𝜓1𝑠(𝒓𝒋) = (
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𝑒−𝑍𝑟𝑗/𝑎0           𝑎0 =
4𝜋𝜀0ℏ2

𝑚𝑒𝑒2
 

Now use 𝑍 as a variational parameter. Evaluate, 

𝐸(𝑍) = ∫ 𝜙0(𝒓𝟏, 𝒓𝟐)𝐻̂𝜙0(𝒓𝟏, 𝒓𝟐) 𝑑𝒓𝟏𝑑𝒓𝟐 

To get,  

𝐸(𝑍) =
𝑚𝑒𝑒4
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Minimize 𝐸 w. r. t. 𝑍,   
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𝐸𝑚𝑖𝑛 = − (
27

16
)

2

= −2.8477 Hartree   

Most accurate calculation −2.9037 Hartree 

 

Perturbation Method 

Perturbation theory 

 𝐻̂ is the Hamiltonian of the problem at hand, 𝐻̂𝜓 = 𝐸𝜓. Find 𝐻̂(0) – a fully solvable Hamiltonian 

that is very close to the problem at hand, i.e. 

𝐻̂ = 𝐻̂(0) + 𝐻̂(1) 

Here, 𝐻̂(1) is a small deviation, a disturbance or a perturbation to the fully solvable problem whose 

Hamiltonian is 𝐻̂(0). 

So, 

𝐻̂(0)𝜓(0) = 𝐸(0)𝜓(0) 

is something we can solve exactly.  

Let the solution of the Schrodinger equation 𝐻̂𝜓 = 𝐸𝜓 be written as 
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gives the first order correction to energy. 

First order correction to the wavefunction,  
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Example: Anharmonic Oscillator 
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𝐻𝑣(𝛼1/2𝑥)𝑒−𝛼𝑥2/2  
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