The First Law: Heat and Work

$$
\Delta U=q+w
$$

State and path functions

$$
d U=\delta q+\delta w, \quad \oint d U=0
$$

Lets consider an example of expansion of an ideal gas. Consider some reversible processes.

Isothermal path $(A \rightarrow B)$:

$$
\begin{gathered}
\Delta U_{A B}=0 \Rightarrow \delta w_{A B}=-\delta q_{A B} \\
\delta w=-P_{e x t} d V=-P d V \text { for rev. change } \\
w_{A B}=-q_{A B}=-\int_{V_{1}}^{V_{2}} P d V \\
=-\int_{V_{1}}^{V_{2}} \frac{R T_{1}}{V} d V=-R T_{1} \ln \frac{V_{2}}{V_{1}} \text { (for one mole) }
\end{gathered}
$$

Adiabatic path $(A \rightarrow C)+$ constant volume path $(C \rightarrow B)$:

Path $A \rightarrow C$:

$$
\begin{gathered}
q_{A C}=0 \Rightarrow \mathrm{~d} U_{A C}=\delta w_{A C} \\
C_{V}(T)=\left(\frac{\partial U}{\partial T}\right)_{V}=\frac{d U}{d T} \\
\therefore \Delta U_{A C}=\int_{T_{1}}^{T_{2}} C_{V}(T) d T=w_{A C}
\end{gathered}
$$

Path $\mathrm{C} \rightarrow \mathrm{B}$:

Heat the gas reversibly at constant volume. So $w_{C B}=0$ and hence,

$$
\Delta U_{C B}=q_{C B}=\int_{T_{2}}^{T_{1}} C_{V}(T) d T
$$

Total: AC+CB

$$
\Delta U_{A C}+\Delta U_{C B}=\int_{T_{1}}^{T_{2}} C_{V}(T) d T+\int_{T_{2}}^{T_{1}} C_{V}(T) d T=0=\Delta U_{A B}
$$

However, q and w are not the same for the two paths!! Work and heat are path functions

Temperature \boldsymbol{T}_{1} or \boldsymbol{T}_{2} - which one is greater?

Isotherm: Gas expands and does work, heat is pumped in to maintain temperature at T_{1}

Adiabat: Gas expands and does work, but no heat pumped in to maintain temperature - gas cools down to T_{2}

Adiabatic expansion

$$
d U=\delta w=d w
$$

Work is now a state function

$$
\begin{gathered}
d U=C_{V}(T) d T \\
d w=-P d V=-\frac{n R T}{V} d V
\end{gathered}
$$

Equate the two,

$$
\begin{gathered}
\overline{C_{V}}(T) d T=-\frac{R T}{V} d V \\
\int_{T_{1}}^{T_{2}} \frac{\overline{C_{V}}(T)}{T} d T=-\int_{V_{1}}^{V_{2}} \frac{R}{V} d V
\end{gathered}
$$

For a monatomic ideal gas, $\overline{C_{V}}=\frac{3}{2} R$

$$
\begin{gathered}
\frac{3}{2} R \int_{T_{1}}^{T_{2}} \frac{d T}{T}=-R \int_{V_{1}}^{V_{2}} \frac{d V}{V} \\
\frac{3}{2} \ln \frac{T_{2}}{T_{1}}=\ln \frac{V_{1}}{V_{2}} \\
\left(\frac{T_{2}}{T_{1}}\right)^{3 / 2}=\left(\frac{V_{1}}{V_{2}}\right) \\
\left(\frac{P_{2} V_{2}}{P_{1} V_{1}}\right)^{3 / 2}=\left(\frac{V_{1}}{V_{2}}\right)
\end{gathered}
$$

Or
$P V^{\gamma}=$ constant where $\gamma=\frac{C_{p}}{C_{v}}=\frac{5}{3}$ for a monatomic ideal gas

Molecular Interpretation of Work and Heat

Average energy of a macroscopic system

$$
\begin{gathered}
\langle U\rangle=\sum_{j} p_{j}(N, V, \beta) E_{j}(N, V) \\
\text { where } p_{j}=\frac{e^{-\beta E_{j}}}{Q(N, V, \beta)}
\end{gathered}
$$

Now, $U=U(p, E)$

$$
d U=\sum_{j} p_{j} d E_{j}+\sum_{j} E_{j} d p_{j}
$$

Let us not change the number of particles, i.e. we deal with a closed system. $\therefore d E_{j}$ is the change due to a change in the volume. So,

$$
\begin{gathered}
d U=\sum_{j} p_{j}\left(\frac{\partial E_{j}}{\partial V}\right)_{N} d V+\sum_{j} E_{j} d p_{j} \\
d U=\delta w+\delta q=-P d V+\delta q
\end{gathered}
$$

Now, $\sum_{j} p_{j}\left(\frac{\partial E_{j}}{\partial V}\right)_{N} d V$ is the average change in energy because of a change in the volume of the system. Hence, this is the mechanical average work, w.

The other term $\sum_{j} E_{j} d p_{j}$ must therefore be the average heat exchanged, \boldsymbol{q}.

Since the processes are carried out infinitesimally, these are reversible and so the work done and heat exchanged are carried out reversibly. We can then write

$$
\delta w_{r e v}=\sum_{j} p_{j}\left(\frac{\partial E_{j}}{\partial V}\right)_{N} d V
$$

Reversible work is the result of infinitesimal change of allowed energy states without changing the probability distribution.

$$
\delta q_{r e v}=\sum_{j} E_{j} d p_{j}
$$

Reversible heat is the result of changing the probability distribution of the states. There is no change in the energies per se.

Since,

$$
\delta w_{r e v}=-P d V
$$

$$
\therefore \quad P=\sum_{j} p_{j}\left(\frac{\partial E_{j}}{\partial V}\right)_{N}=-\left\langle\left(\frac{\partial E}{\partial V}\right)_{N}\right\rangle \text { (we used this result earlier) }
$$

Enthalpy

$$
\Delta U=q+w=q-\int_{V_{1}}^{V_{2}} P d V
$$

At constant volume,

$$
\Delta U=q_{V}
$$

Measure experimentally using a closed vessel - bomb calorimeter
Most processes occur at constant pressure

$$
q_{p}=\Delta U+P_{e x t} \int_{V_{1}}^{V_{2}} d V=\Delta U+P_{e x t} \Delta V
$$

Define enthalpy:

$$
H=U+P V
$$

At constant pressure,

$$
\Delta H=\Delta U+P \Delta V=q_{p}
$$

Two examples

Melting of ice at $0^{\circ} \mathrm{C}$

$$
\begin{gathered}
\Delta \bar{H}=q_{p}=6.01 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
\Delta \bar{U}=\Delta \bar{H}-P \Delta \bar{V}=\Delta \bar{H}-P\left(\bar{V}_{l}-\bar{V}_{S}\right) \\
=6.01 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}-(1 \mathrm{~atm})\left(0.0180 \mathrm{~L} \cdot \mathrm{~mol}^{-1}-0.0196 \mathrm{~L} \cdot \mathrm{~mol}^{-1}\right) \\
=6.01 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}-\left(1.60 \times 10^{-3} \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1}\right)\left(\frac{8.314 \mathrm{~J}}{0.08206 \mathrm{~L} \cdot \mathrm{~atm}}\right)\left(\frac{1 \mathrm{~kJ}}{10^{3} \mathrm{~J}}\right) \\
\approx 6.01 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

Vaporization of water at $100{ }^{\circ} \mathrm{C}: \mathrm{H}_{2}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})$

$$
\begin{gathered}
\Delta \bar{H}=q_{p}=40.7 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \\
\Delta \bar{V}=(30.6-0.0180) \mathrm{L} \cdot \mathrm{~mol}^{-1} \approx 30.6 \mathrm{~L} \cdot \mathrm{~mol}^{-1}
\end{gathered}
$$

$\Delta \bar{U}=\Delta \bar{H}-P \Delta \bar{V}=40.7 \mathrm{~kJ} . \mathrm{mol}^{-1}-(1 \mathrm{~atm})\left(30.6 \mathrm{~L} \cdot \mathrm{~mol}^{-1}\right)\left(\frac{8.314 \mathrm{~J}}{0.08206 \mathrm{~L} . \mathrm{atm}}\right)\left(\frac{1 \mathrm{~kJ}}{10^{3} \mathrm{~J}}\right)=37.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta \bar{U}$: used to overcome the intermolecular forces. $\Delta \bar{H}-\Delta \bar{U}=3.1 \mathrm{~kJ} . \mathrm{mol}^{-1}$ is required to increase the volume of the system against the atmospheric pressure.

Heat capacity is a path function: $C_{P}-C_{v}=n R$ for an ideal gas. Prove this.

5 | IIT Delhi - CML 100:18 - Work, Heat, Energy, Enthalpy

$$
C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P} \quad C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

