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Figure 2.1: A vibrating string

A linear partial differential equation

0%u(x,t) 1 0%u(x,t)
ax2  v2  at?

Boundary conditions
u(0,t) =0 and u(l,t) =0 at all times
Separation of variables: A technique used when the two variables are independent
ulx,t) = X(x)T(t)
which gives

1 d’X(x) 1 d°T(t)
X(x) dx?  v2T(t) dt?

Since LHS is only dependent on the position and RHS on time they must be equal to a constant, K

% - KX(x)=0 and dzgt) — Kv2T(t) =0
These are linear differential equations with constant coefficients.
SolutionsK =0, K < 0,K >0
For K = 0, the solution are trivial — no use
For K > 0, its a subset of the solution for K < 0
ForK <0
Lets rewrite the equation in this form % + k?y = 0 where K = —f32

We need a solution that when differentiated twice gives back the same function. Lets try y = e**
This gives, (a2 + %) y(x) =0
ieea==xif

The general solution is then
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y(x) = c,eP* + c,e h*

Using Euler’s formula,
et = cosf +isin@
we get
y(x) = Acosfx + Bsinfx

See for yourself that the case of K > 0 is a special case of the solutions for K < 0.
Boundary conditions: See the two equations for X (x)and T (t)
X(0) =0 impliesd =0
X() =0impliesX(l) = BsinBl =0 B = 0 is trivial. So, sin 81 = 0 gives

Bl =nn n=123..

n = 0 is not a solution because the wave does not exist.

nmx
X(x)=B sinT

Also, for T(t)

d?T(t)
dt?

+ B%v2T(t) =0
The general solution (remember § = nrt/l) is
T(t) = Dcosw,t + Esinw,t

So the amplitude of the wave u is given by (it now depends on n)

. nmx _
Uy (x,t) = X()T(t) = (Bn smT ) (D, cos w,t + E, sinwyt)

nmwx
= (F, cos w,t + G, sinw,t) sinT

Superposition
As each u, (x, t) is a solution to the linear differential equation, so is any sum of the u, (x, t) 's.

A most general solution is

- _ . nmx
u(x, t) = Z(Fn cos w,t + G, sin wyt) sin——

n=1

or
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- . nmx
u(x,t) = Z A, cos(wnt + ¢p) sin——
n=1

where A is the amplitude and ¢ the phase angle. No matter how the string is plucked its shape will

evolve according to the above equations.

Each u, (x, t) is called a normal mode. The time dependence of each normal mode represents
harmonic motion of frequency v, = w,/2n = vn/2l (since w,, = nnv/l)
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Figure 1.2: The first few modes of vibration

First harmonic = fundamental mode, frequency v/21

Second harmonic = first overtone, frequency v/l

Mid-point of the second harmonic does not change with time. Its fixed at zero. This is a node
which you will also encounter in quantum mechanics. x = 0 and x = [ are not nodes — they are

boundary conditions.
These are standing waves.

Add up the first two harmonics, phase shifted by 90°

o) = fsi nx_l_l ( t+n) . 2mx
u(x,t) = cos w;tsin ] 2cos W, > sin ;

Some work: sketch the travelling wave.
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Schrédinger Equation

Lets start with the classical wave equation

0%u 1 0%u
dx2  v2 0t2

which as we have seen above can be solved to give
u(x,t) = Y(x) coswt

Y (x) is called the spatial amplitude of the wave. This gives,

d>yp  w?
oz Tz v =0
Sincew = 2mwvandvAd = v,
d>y 4Am?
oz T Y =0
Now the total energy
2
p
E =KE + PE = —
+ o + V(x)

and so
p = {2m[E -V (x|}

Use de Broglie relation A = h/p. This is where quantum mechanics comes in

h h
A=—= 1
P om[E-vE)))e
and we get,
d? 2
E§+;§[E—vwnw@)=o
or
h% d%y
—o— VY@ = Ep(x)

This is the time-independent Schrddinger equation

In this course we will not worry about the time-dependent Schrddinger equation
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Operators
An operator operates — it does something. For example, an “turn 90° left” is an operator that tells us
to turn left by 90°. Another example could be “walk five paces ahead”.

Mathematical operators tell us to perform a mathematical operation on a function (f(x) to give
another function g(x).

Some examples of mathematical operators

INTEGRATE: [} (%) = g(x)

SaR: (f(x))" = g(x)
DIFFERENTIATE: =~ f (x) = g(x)

In general we can denote an operator using a hat on it,
Af(x) = gx)
Operators and quantum mechanics

In guantum mechanics, we encounter only linear operators. This is one of the postulates of QM
which we will discuss later.

Ale i) + ¢ ()] = ¢ A(fi(x) + A(f>(x)
Here c; and ¢, can be complex numbers.
Differentiate and integrate are linear. Squaring is non-linear.

Operators may not commute like numbers, i.e. A B f(x) is not necessarily equal to BA f(x). As an
example consider the case of a person walking five paces and turning 90°.

Eigenfunctions and Eigenvalues

A function that gets operated and results in the same function apart from a multiplicative factor is
an eigenfunction of the operator

Af(x) = af(x)
Finding the eigenfunction of the operator and the eigenvalue is called an eigenvalue problem.
The Schrddinger equation can be written as

2 2
Y volwm = Epe

2m dx?

or

Hy@x) = Epx)
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where H is called the Hamiltonian operator and the eigenvalue is the energy. So there is a
correspondence between the operator and a measurable. Such correspondences between operators
and classical-mechanical variables are fundamental to the formalism of QM.

. . BT L o _ﬁ,ﬂlp
Since the energy is KE + PE, and PE = V(x) -~ KE = Py

2 2

4 d°y

KE = = p? = —h?
om P dx?
, , a4 A L d o o
~p.p=—nh T orp = —lha (the minus sign is needed for the correct direction)

Probability

Discrete Events

An experiment has n possible outcomes, each with probability p;. We perform the experiment a
large number of times (ideally infinite number of times)

. N; .
pj = lim = j=123....n

n-o N

0<p;j=<1 and ZXp; =1 (normalization)
Suppose we get a value x; at the jt" experiment, then the average is defined as
(x) =Zxjp; = Zx;p(x))

Second momemt

Second central moment or variance

n

oF = (= (DA = ) (55— (0) py = (xA) = (12

Jj=1
o, is called the standard deviation.
Continuous distributions

prob (x,x + dx) = p(x)dx

b
prob(a<x<b)= fp(x)d(x)

a
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Normalization condition

oo

fpuwu)=1

— 00

Average and standard deviation

(x) = fxp@w@)

(x2) = fﬂpwww)

— 0o

o2 = fu—uwpuma)

Quantum mechanics and probability

If we restrict the particle in a certain region, then the probability of finding the particle in this region
is one. Qutside this region the particle does not exist. Since the intensity of a wave is the square of
the magnitude of the amplitude, mathematically we say ¥*(x)y¥(x)dx is the probability that the
particle is located between x and x + dx.



