Classical waves

 $\mathbf{u}(\mathrm{x}, \mathrm{t}$

Figure 2.1: A vibrating string

A linear partial differential equation

$$
\frac{\partial^{2} u(x, t)}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} u(x, t)}{\partial t^{2}}
$$

Boundary conditions

$$
u(0, t)=0 \quad \text { and } \quad u(l, t)=0 \quad \text { at all times }
$$

Separation of variables: A technique used when the two variables are independent

$$
u(x, t)=X(x) T(t)
$$

which gives

$$
\frac{1}{X(x)} \frac{d^{2} X(x)}{d x^{2}}=\frac{1}{v^{2} T(t)} \frac{d^{2} T(t)}{d t^{2}}
$$

Since LHS is only dependent on the position and RHS on time they must be equal to a constant, K

$$
\frac{d^{2} X(x)}{d x^{2}}-K X(x)=0 \quad \text { and } \quad \frac{d^{2} T(t)}{d t^{2}}-K v^{2} T(t)=0
$$

These are linear differential equations with constant coefficients.

Solutions $K=0, K<0, K>0$
For $K=0$, the solution are trivial - no use
For $K>0$, its a subset of the solution for $K<0$
For $K<0$

Lets rewrite the equation in this form $\frac{d^{2} y}{d x^{2}}+k^{2} y=0$ where $K=-\beta^{2}$
We need a solution that when differentiated twice gives back the same function. Lets try $y=e^{\alpha x}$
This gives, $\left(\alpha^{2}+\beta^{2}\right) y(x)=0$
i.e. $\alpha= \pm i \beta$

The general solution is then

$$
y(x)=c_{1} e^{i \beta x}+c_{2} e^{-i \beta x}
$$

Using Euler's formula,

$$
e^{ \pm i \theta}=\cos \theta \pm i \sin \theta
$$

we get

$$
y(x)=A \cos \beta x+B \sin \beta x
$$

See for yourself that the case of $K>0$ is a special case of the solutions for $K<0$.
Boundary conditions: See the two equations for $X(x)$ and $T(t)$
$X(0)=0$ implies $A=0$
$X(l)=0$ implies $X(l)=B \sin \beta l=0 \quad B=0$ is trivial. So, $\sin \beta l=0$ gives

$$
\beta l=n \pi \quad n=1,2,3 \ldots
$$

$n=0$ is not a solution because the wave does not exist.

$$
X(x)=B \sin \frac{n \pi x}{l}
$$

Also, for $T(t)$

$$
\frac{d^{2} T(t)}{d t^{2}}+\beta^{2} v^{2} T(t)=0
$$

The general solution (remember $\beta=n \pi / l$) is

$$
T(t)=D \cos \omega_{n} t+E \sin \omega_{n} t
$$

So the amplitude of the wave u is given by (it now depends on n)

$$
\begin{gathered}
u_{n}(x, t)=X(x) T(t)=\left(B_{n} \sin \frac{n \pi x}{l}\right)\left(D_{n} \cos \omega_{n} t+E_{n} \sin \omega_{n} t\right) \\
=\left(F_{n} \cos \omega_{n} t+G_{n} \sin \omega_{n} t\right) \sin \frac{n \pi x}{l}
\end{gathered}
$$

Superposition

As each $u_{n}(x, t)$ is a solution to the linear differential equation, so is any sum of the $u_{n}(x, t){ }^{\prime} s$.

A most general solution is

$$
u(x, t)=\sum_{n=1}^{\infty}\left(F_{n} \cos \omega_{n} t+G_{n} \sin \omega_{n} t\right) \sin \frac{n \pi x}{l}
$$

or

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \cos \left(\omega_{n} t+\phi_{n}\right) \sin \frac{n \pi x}{l}
$$

where A is the amplitude and ϕ the phase angle. No matter how the string is plucked its shape will evolve according to the above equations.

Each $u_{n}(x, t)$ is called a normal mode. The time dependence of each normal mode represents harmonic motion of frequency $v_{n}=\omega_{n} / 2 \pi=v n / 2 l \quad$ (since $\omega_{n}=n \pi v / l$)

fourth
mode wavelength frequency
first second
third
$2 L \quad \frac{V}{2 L}$
$2 L \quad \frac{V}{2 L}$
L
$\frac{V}{L}$
$\frac{2 L}{3}$
$\frac{3 V}{2 L}$
$\frac{L}{2}$
$\frac{2 V}{L}$

Figure 1.2: The first few modes of vibration

First harmonic $=$ fundamental mode, frequency $v / 2 l$
Second harmonic $=$ first overtone, frequency v / l

Mid-point of the second harmonic does not change with time. Its fixed at zero. This is a node which you will also encounter in quantum mechanics. $x=0$ and $x=l$ are not nodes - they are boundary conditions.

These are standing waves.
Add up the first two harmonics, phase shifted by 90°

$$
u(x, t)=\cos \omega_{1} t \sin \frac{\pi x}{l}+\frac{1}{2} \cos \left(\omega_{2} t+\frac{\pi}{2}\right) \sin \frac{2 \pi x}{l}
$$

Some work: sketch the travelling wave.

Schrödinger Equation

Lets start with the classical wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

which as we have seen above can be solved to give

$$
u(x, t)=\psi(x) \cos \omega t
$$

$\psi(x)$ is called the spatial amplitude of the wave. This gives,

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{\omega^{2}}{v^{2}} \psi(x)=0
$$

Since $\omega=2 \pi v$ and $v \lambda=v$,

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{4 \pi^{2}}{\lambda^{2}} \psi(x)=0
$$

Now the total energy

$$
E=K E+P E=\frac{p^{2}}{2 m}+V(x)
$$

and so

$$
p=\{2 m[E-V(x)]\}^{1 / 2}
$$

Use de Broglie relation $\lambda=h / p$. This is where quantum mechanics comes in

$$
\lambda=\frac{h}{p}=\frac{h}{\{2 m[E-V(x)]\}^{\frac{1}{2}}}
$$

and we get,

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}}[E-V(x)] \psi(x)=0
$$

or

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi(x)=E \psi(x)
$$

This is the time-independent Schrödinger equation

In this course we will not worry about the time-dependent Schrödinger equation

Operators

An operator operates - it does something. For example, an "turn $90^{\circ} \mathrm{left}$ " is an operator that tells us to turn left by 90°. Another example could be "walk five paces ahead".

Mathematical operators tell us to perform a mathematical operation on a function $(f(x)$ to give another function $g(x)$.

Some examples of mathematical operators
INTEGRATE: $\int_{0}^{1} f(x)=g(x)$
SQR: $(f(x))^{2}=g(x)$
DIFFERENTIATE: $\frac{d}{d x} f(x)=g(x)$
In general we can denote an operator using a hat on it,

$$
\hat{A} f(x)=g(x)
$$

Operators and quantum mechanics

In quantum mechanics, we encounter only linear operators. This is one of the postulates of QM which we will discuss later.

$$
\hat{A}\left[c_{1} f_{1}(x)+c_{2} f_{2}(x)\right]=c_{1} \hat{A}\left(f_{1}(x)+c_{2} \hat{A}\left(f_{2}(x)\right.\right.
$$

Here c_{1} and c_{2} can be complex numbers.
Differentiate and integrate are linear. Squaring is non-linear.
Operators may not commute like numbers, i.e. $\hat{A} \hat{B} f(x)$ is not necessarily equal to $\hat{B} \hat{A} f(x)$. As an example consider the case of a person walking five paces and turning 90°.

Eigenfunctions and Eigenvalues

A function that gets operated and results in the same function apart from a multiplicative factor is an eigenfunction of the operator

$$
\hat{A} f(x)=a f(x)
$$

Finding the eigenfunction of the operator and the eigenvalue is called an eigenvalue problem.

The Schrödinger equation can be written as

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x)\right] \psi(x)=E \psi(x)
$$

or

$$
\widehat{H} \psi(x)=E \psi(x)
$$

where \widehat{H} is called the Hamiltonian operator and the eigenvalue is the energy. So there is a correspondence between the operator and a measurable. Such correspondences between operators and classical-mechanical variables are fundamental to the formalism of QM.

Since the energy is KE $+P E$, and $\widehat{P E}=V(x) \therefore \widehat{K E}=-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}$

$$
K E=\frac{p^{2}}{2 m} \Rightarrow \hat{p}^{2}=-\hbar^{2} \frac{d^{2} \psi}{d x^{2}}
$$

$\therefore \hat{p} . \hat{p}=-\hbar^{2} \frac{d^{2} \psi}{d x^{2}}$ or $\hat{p}=-i \hbar \frac{d}{d x}$ (the minus sign is needed for the correct direction)

Probability

Discrete Events

An experiment has n possible outcomes, each with probability p_{j}. We perform the experiment a large number of times (ideally infinite number of times)

$$
\begin{gathered}
p_{j}=\lim _{n \rightarrow \infty} \frac{N_{j}}{N} \\
0 \leq p_{j} \leq 1 \quad \text { and } \quad \Sigma p_{j}=1 \quad \text { (normalization) }
\end{gathered}
$$

Suppose we get a value x_{j} at the $j^{t h}$ experiment, then the average is defined as

$$
\langle x\rangle=\sum x_{j} p_{j}=\Sigma x_{j} p\left(x_{j}\right)
$$

Second momemt

$$
\left\langle x^{2}\right\rangle=\sum_{j=1}^{n} x_{j}^{2} p_{j}
$$

Second central moment or variance

$$
\sigma_{x}^{2}=\left\langle(x-\langle x\rangle)^{2}\right\rangle=\sum_{j=1}^{n}\left(x_{j}-\langle x\rangle\right)^{2} p_{j}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}
$$

σ_{x} is called the standard deviation.

Continuous distributions

$$
\begin{gathered}
\operatorname{prob}(x, x+d x)=p(x) d x \\
\operatorname{prob}(a \leq x \leq b)=\int_{a}^{b} p(x) d(x)
\end{gathered}
$$

Normalization condition

$$
\int_{-\infty}^{\infty} p(x) d(x)=1
$$

Average and standard deviation

$$
\begin{gathered}
\langle x\rangle=\int_{-\infty}^{\infty} x p(x) d(x) \\
\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} x^{2} p(x) d(x) \\
\sigma_{x}^{2}=\int_{-\infty}^{\infty}(x-\langle x\rangle)^{2} p(x) d(x)
\end{gathered}
$$

Quantum mechanics and probability

If we restrict the particle in a certain region, then the probability of finding the particle in this region is one. Outside this region the particle does not exist. Since the intensity of a wave is the square of the magnitude of the amplitude, mathematically we say $\psi^{*}(x) \psi(x) d x$ is the probability that the particle is located between x and $x+d x$.

