Classical Harmonic Oscillator

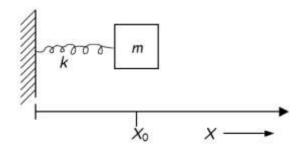


Figure 5.1: Classical Harmonic Oscillator

Hooke's Law

$$f = -kx = -k(x - x_{eq})$$

$$f = ma = -kx$$

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

General solutions

$$x(t) = A \sin \omega t + B \cos \omega t$$
 $\omega = \sqrt{k/m}$ $x(t) = C \sin(\omega t + \phi)$

Initial conditions:

 $x\left(t=0
ight)=\,x_{0}$, $\ v_{0}=0$ spring stretched to x_{0} and released at time t=0. This gives,

$$x(t) = x_0 \cos \omega t$$

Mass and spring (spring is assumed massless) oscillate with frequency $\omega = \sqrt{k/m}$

Energy of H.O.

Kinetic Energy

$$KE = \frac{1}{2} mv^2 = \frac{1}{2} m \left(\frac{dx}{dt}\right)^2 = \frac{1}{2} m \left(\omega^2 x_0^2 \sin^2 \omega t\right) = \frac{1}{2} k x_0^2 \sin^2 \omega t$$

Potential Energy (*U*) is given by f(x) = -dU/dx

$$PE = U = -\int f(x)dx = k \int x \, dx = \frac{1}{2} kx^2 = \frac{1}{2} k x_0^2 \cos^2 \omega t$$

$$Total\ Energy = KE + PE = \frac{1}{2}\ kx_0^2$$

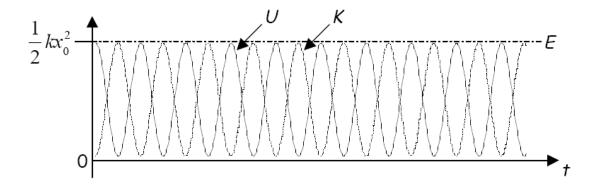


Figure 5.2: KE, PE and Total energy

Small displacements - diatomic molecule

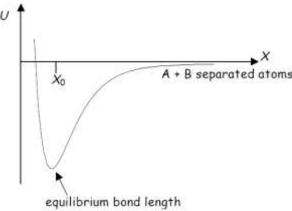


Figure 5.3: PE as a function of the distance

Expand U(x) about the mean position x_e

$$U(x) = \left. U(x_e) + \left\{ \frac{dU}{dx} \right|_{x = x_e} (x - x_e) \right\} + \left\{ \frac{1}{2} \frac{d^2 U}{dx^2} \right|_{x = x_e} (x - x_e)^2 \right\} + \left\{ \frac{1}{3.2} \frac{d^3 U}{dx^3} \right|_{x = x_e} (x - x_e)^3 \right\} + \cdots$$

Since the zero of potential can be defined as per our choice, lets fix $U(x_e) = 0$.

We could shift the origin to the equilibrium position

$$U(x) = \left\{ \frac{dU}{dx} \Big|_{x=0} x \right\} + \left\{ \frac{1}{2} \frac{d^2 U}{dx^2} \Big|_{x=0} x^2 \right\} + \left\{ \frac{1}{3 \cdot 2} \frac{d^3 U}{dx^3} \Big|_{x=0} x^3 \right\} + \dots$$

The first term goes to zero at equilibrium

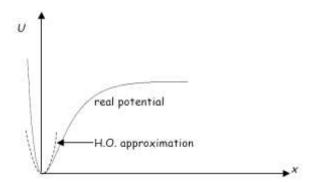


Figure 5.4: H. O. approximation

For small displacements only the second term is significant enough

$$U(x) = \frac{1}{2} \frac{d^2 U}{dx^2} \Big|_{x=0} x^2$$
 or $U(x) = \frac{1}{2} kx^2$

Center of mass and reduced mass coordinates

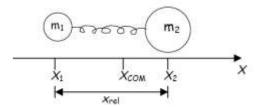


Figure 5.5: Center of mass (l_0 is the undisturbed length)

For particle 1,
$$m_1 \frac{d^2 x_1}{dt^2} = k(x_2 - x_1 - l_0)$$
 and for particle 2, $m_2 \frac{d^2 x_2}{dt^2} = -k(x_2 - x_1 - l_0)$

The forces are equal and opposite, $\frac{d^2}{dt^2}(m_1x_1+m_2x_2)=0$

Define the center of mass coordinate, $X = \frac{m_1x_1 + m_2x_2}{m_1 + m_2} = \frac{m_1x_1 + m_2x_2}{M}$

Then, $M \frac{d^2X}{dt^2} = 0$ (The COM moves uniformly in time with constant momentum)

The relative motion of the two bodies is important, $x=x_2-x_1-l_0$ is the relative coordinate

This gives, $\frac{d^2x_2}{dt^2} - \frac{d^2x_1}{dt^2} = -\frac{k}{m_2}x - \frac{k}{m_1}x$ (from the above equations by dividing with the respective m)

$$\frac{d^2}{dt^2}(x_2 - x_1) = -k\left(\frac{1}{m_1} + \frac{1}{m_2}\right)x = -\frac{k}{\mu}x$$
 (μ is the reduced mass)

Gives, $\mu \frac{d^2x}{dt^2} + kx = 0$ (A two body problem gets reduced to a one body problem

$$E_{vib} = \frac{1}{2}\mu \left(\frac{dx}{dt}\right)^2 + \frac{1}{2}kx^2$$

Solve this problem quantum mechanically.

Schrödinger equation

$$-\frac{\hbar^2}{2\mu}\frac{d^2\psi}{dx^2} + \frac{1}{2}kx^2\psi = E\psi$$

No longer are we dealing with constant coefficients

Try a solution - wild guess !!! (Gaussian function) $\rightarrow f(x) = e^{-\frac{\alpha x^2}{2}}$

$$\frac{d^2f}{dx^2} = -\alpha \exp\left(-\frac{\alpha x^2}{2}\right) + \alpha^2 x^2 \exp\left(-\frac{\alpha x^2}{2}\right) = -\alpha^2 f + \alpha^2 x^2 f$$
$$\frac{d^2f}{dx^2} + \alpha f - \alpha^2 x^2 f = 0$$

which matches the S. E. if , $\alpha=\frac{2\mu E}{\hbar^2}$ and $\alpha^2=\frac{\mu k}{\hbar^2}$ and $E=\frac{1}{2}$ $\hbar\omega$

Normalize the wavefunction to get

$$\psi = \left(\frac{\alpha}{\pi}\right)^{1/4} \exp\left(-\frac{\alpha x^2}{2}\right)$$

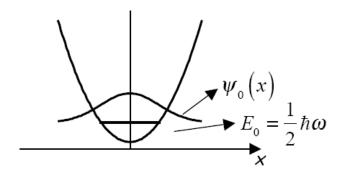


Figure 5.6: Lowest eigenfunction for H.O. Symmetric function. Even function. No nodes.

What about other eigenfunctions and eigenvalues?

$$\psi_v(x) = N_v H_v(y) e^{-y^2/2} \qquad y^2 = \alpha x^2 \qquad \qquad \alpha^2 = \left(\mu k/\hbar^2\right) \qquad N_v = \frac{1}{2^v \, v!} \left(\frac{\alpha}{\pi}\right)^{1/4}$$
 Atkin's notation $\psi_v(x) = N_v H_v(y) e^{-y^2/2} \qquad \qquad y = \frac{x}{\alpha} \qquad \qquad \alpha = \left(\frac{\hbar^2}{mk}\right)^{1/4}$

Table 9.1 The Hermite polynomials $H_{\nu}(y)$

V	$H_1(y)$
0	1
1	2y
2	$4y^2 - 2$
3	$8y^3 - 12y$
4	$16y^4 - 48y^2 + 12$
5	$32y^5 - 160y^3 + 120y$
6	$64y^6 - 480y^4 + 720y^2 - 120$

Hermite polynomials satisfy the recursion relation $H_{v+1} - 2yH_v + 2vH_{v-1} = 0$

An important integral

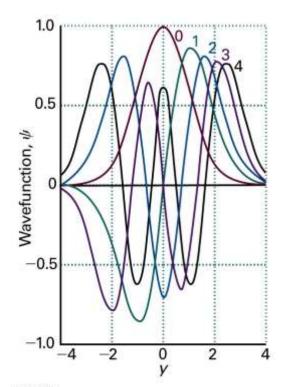


Figure 9-25 Atkins Physical Chemistry, Eighth Editi © 2006 Peter Atkins and Julio de Paula

$$\int_{-\infty}^{\infty} H_{\nu} H_{\nu \nu} e^{-y^2} dy = \begin{cases} 0 & \text{if } v \neq \nu \\ \sqrt{\pi} 2^{\nu} v! & \text{if } v = \nu \end{cases}$$

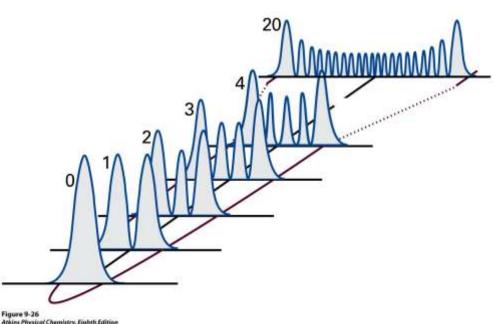


Figure 9-26 Arkins Physical Chemistry, Eighth Edition © 2006 Peter Atkins and Julio de Paula

- 1. The Gaussian goes very strongly to zero as the displacement increases.
- 2. The exponent y^2 is proportional to $x^2 \times (mk)^{1/2}$. So larger masses, stiffer springs decay
- 3. As v increases, the Hermite polynomials become large at large displacements (x^v) , so wavefunctions grow till larger displacements before the exponent damps them