1 | lIT Delhi - CML 100:4 — Harmonic Oscillator

Classical Harmonic Oscillator
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Figure 5.1: Classical Harmonic Oscillator

Hooke's Law
f=—kx= —k(x—xe)
f=ma= —kx

d*x  k
dt?

General solutions

x(t) = Asinwt + B coswt 1)

k/m
x(t) = Csin(wt + ¢)
Initial conditions:
x(t=0)= x5, vy =0 springstretched to x, and released at time t = 0. This gives,
x(t) = xycoswt
Mass and spring (spring is assumed massless) oscillate with frequency w = \/k/_m
Energy of H.O.

Kinetic Energy

1 1 dxy* 1 1
KE =3 mv? = m(—) =35m (w?x¥ sin? wt) = > k x3 sin? wt

Potential Energy (U) is given by f(x) = —dU/dx

1 1
PE=1U-= —ff(x)dx=kfxdx=ikx2=§kx§coszwt
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1
Total Energy = KE + PE = 3 kx?

Figure 5.2: KE, PE and Total energy

Small displacements - diatomic molecule
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Figure 5.3: PE as a function of the distance

Expand U(x)about the mean position x,

1 d3U

1d*U ( el s
e XX 3.2 dx3

e, (x— xe)} + {EW

(x—xy} + o

du
Ux) = Ulx,) + {—
dx

X=X¢
Since the zero of potential can be defined as per our choice, lets fix U(x,) = 0.

We could shift the origin to the equilibrium position

}+ 1d*U 2] (1 d*U
o ) 2an?| _* 3.2 dx?

The first term goes to zero at equilibrium

dUu

ve) = (g,

x3} +
x=0
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real potential

'4—H.O. approximation

Figure 5.4: H. O. approximation

For small displacements only the second term is significant enough

1d%U 1
2 2
Ulx) = S dx x or Ulx)= > kx

x=0

Center of mass and reduced mass coordinates
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Figure 5.5: Center of mass (l; is the undisturbed length)

dzxZ
dt?

dle _
at?

For particle 1, m, k(xy —x1 —1ly) and forparticle 2, m, =—k(xy, —x1 —lp)

.ood?
The forces are equal and opposite, 0z (myxq +myx,) =0

. . mqx{+m-oXx mixX{+m-x
Define the center of mass coordinate, X = =222 — 171272
m1+m2 M

2
Then, MZT)Z( = 0 (The COM moves uniformly in time with constant momentum)

The relative motion of the two bodies is important, x = x, — x; — [ is the relative coordinate

d*x;  dPxy k k

This gives, Te2 Tz = m—zx - m—lx (from the above equations by dividing with the respective m)
d? 1 1 k .
m(xz —x)=—k (m_1 + m—z)x =X (u is the reduced mass)
2
Gives, ,u% + kx = 0 (A two body problem gets reduced to a one body problem
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1 /dx
Eyip = SH (E)

Solve this problem quantum mechanically.

Schrédinger equation

2

dx? 2
2
a7 2
dx?
which matches the S. E. if, a = ZFLLZE and a? = ‘f‘l_’z‘

Normalize the wavefunction to get

+ = kx?

Figure 5.6: Lowest eigenfunction for H.O.
Symmetric function. Even function. No nodes.

What about other eigenfunctions and eigenvalues?

W, (x) = N H,, (y)e /2 y? = ax?

Atkin’s notationy,, (x) = N, H,(y)e 7"/ y= g

d? ax? ax?
a7 —aexp (——) + a?x?exp <——> = —a’f + a?
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Table 9.1 The Hermite polynomials
H (y)
0.5
v H,(y)
=
0 1 c
L
1 2y
) ‘g 0
2 4y* -2 3
)
3 8y’ — 12y 2
4 16y* — 48y + 12 =
5 325 — 160y + 120y —-0.5
6 64y5 — 480y* + 720y% — 120
Tabie 84
byt -tmranpmy ot -l -10 : - : :
Hermite polynomials satisfy the recursion A D 0 2 4
relation H,,; —2yH, +2vH,_ 1 =0 y
"?;".ﬁa«cm & Cdne
Az
An important integral O 200 s M sad b e |

waH g ( 0 ifv+v
;€ = . '
e Y Y= Um2v v ifv=v

Figuee 9-26
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The Gaussian goes very strongly to zero as the displacement increases.
The exponent y? is proportional to x2 x (mk)'/2. So larger masses, stiffer springs decay
faster

3. Asvincreases, the Hermite polynomials become large at large displacements (x"), so
wavefunctions grow till larger displacements before the exponent damps them



