1. In algebra it can be easily shown that $(P+Q)(P-Q)=P^{2}-Q^{2}$. What is the value of $(P+Q)(P-Q)$ if P and Q are operators? Under what conditions will this result be equal to $P^{2}-Q^{2}$.
2. Find $\left[z^{3}, \frac{d}{d z}\right]$ and $\left[\frac{d^{2}}{d x^{2}}, a x^{2}+b x+c\right]$.
3. Which of the following functions cannot be solutions of the Schrödinger equation for all values of x ? Why not? (a) $\operatorname{Asec}(x)$; (b) $\operatorname{Atan}(x)$; (c) $\operatorname{Aexp}\left(x^{2}\right)$; (d) $\operatorname{Aexp}\left(-x^{2}\right)$.
4. Write down the Hamiltonian for the following systems: (a) a particle of mass m in a cubical box of side a; (b) a particle of mass m in a spherical box of radius a; (c) a particle of mass m moving on the x-axis subjected to a force directed towards the origin, of magnitude proportional to the distance from the origin; (d) an electron moving in the presence of a nuclear charge $+Z e$; (e) two electrons moving in the presence of a fixed nucleus of charge $+Z e$.
5. (a) Evaluate the probability of locating a particle in the middle third of 1-D box. (b) Find the probability that a particle in a box L wide can be found between $x=0$ and $x=L / n$ when it is in the nth state.
6. Describe the color of carrots using the particle in a box model. (Hint: Consider the π electrons to be confined to a box whose length is the length of the molecule. Use $1.54 \AA$ as a $\mathrm{C}-\mathrm{C}$ and $1.35 \AA$ as a $\mathrm{C}=\mathrm{C}$ bond length.)
7. Many proteins contain metal porphyrin molecules. These molecules are approximated as square planar and contain 26π electrons. If the edge of the molecule is $\sim 1000 \mathrm{pm}$, then what is the predicted lowest energy absorption of the porphyrin molecule?
8. The possible values obtained from a measurement of a discrete variable, x, are $1,2,3$, and 4. (a) If the respective probabilities are $1 / 4,1 / 4,1 / 4$, and $1 / 4$, calculate the expectation values of x and x^{2}. (b) If the respective probabilities are $1 / 12,5 / 12,5 / 12$, and $1 / 12$, calculate the expectation values of x and x^{2}.
9. Why can the electron not be at the nucleus? Using the uncertainty principle, find the value of the Bohr radius for electron in a H -atom in the ground state.
10. The wave function of the first excited state of a harmonic oscillator is $A x \exp -a x^{2}$. By substituting in the Schrödinger equation determine a. Determine A from the normalization condition.
11. Verify the recursion relation $H_{n+1}(z)-2 z H_{n}(z)+2 n H_{n-1}(z)=0$ using the first four Hermite polynomials.
12. In the vibrational motion of HI , the iodine atom remains stationary because of its large mass. Assume that the hydrogen atom undergoes harmonic motion and that the force constant is $317 \mathrm{~N} \mathrm{~m}^{-1}$, what is the vibrational frequency v_{0} ? What is the zero point energy if H is replaced by D ? Assume that there is no change in the force constant.
