CML 100: 2017-2018 Quantum Tutorial 2

- 1. What are the results of operating on the following functions with the operator d/dx and d^2/dx^2 : (a) $exp(-ax^2)$, (b) cos(bx), (c) exp(ikx)? Which functions are eigen functions of these operators? What are the corresponding eigen values?
- 2. Which of the following operators are linear? (a) d/dx; (b) $\sqrt{}$; (c) exponentiation; (d) integration.
- 3. Determine $\psi^*\psi$ for the following wave functions: (a) $\cos\theta + i\sin\theta$ and (b) $\exp -x^2$.
- 4. Show that $[\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z$ (Hint: Use the operator in Cartesian coordinates).
- 5. Show that $[\hat{L}_x, y] = i\hbar z$
- 6. Show by direct operation that the functions $\sin \theta \exp i\phi$, $\sin \theta \exp(-i\phi)$, and $\cos \theta$ are eigenfunctions of \hat{L}_z . What are the eigenvalues?
- 7. Use the operator for \hat{L}^2 in polar coordinates to show that the function $(3 \cos^2 \theta 1)$ is an eigenfunction of this operator. What is the eigenvalue? What is the quantum number *l* for this function?
- 8. Show that $Y_1^{-1}(\theta, \phi)$ is normalized and it is orthogonal to $Y_2^{1}(\theta, \phi)$.
- Calculate the moment of inertia of H³⁵Cl, H³⁷Cl, and D³⁵Cl all of which have an equilibrium bond length of 1.275 Å. Calculate the positions of the first three rotational transitions for H³⁵Cl and D³⁵Cl.
- 10. In the far infrared spectrum of $H^{79}Br$, there is a series of lines separated by 16.72 cm⁻¹. Calculate the values of the moment of inertia and the internuclear separation in $H^{79}Br$.
- 11. For a hydrogen atom in the ground state find the classically forbidden region and calculate the probability of finding the electron in this region.[Hint: KE + PE = total E]
- 12. Compute the average value of *r*, the most probable value of *r*, and the root-mean-square value of *r* for the 1s and 2p levels of the hydrogen atom. Compare the three kinds of values and explain the origin of their differences.
- 13. Show that the hydrogenlike atomic wave function ψ_{210} is normalized and that it is orthogonal to ψ_{200} .
- 14. Calculate the probability that an electron described by a hydrogen 1s wave function will be found within one Bohr radius of the nucleus.
- 15. Where do the maxima in $r^2 \psi_{2s}^2(r)$ occur?