
1 IIT Delhi - CML 100:4 – Tunnelling 
 

Particle seeing a barrier 

 

 

 

Figure 4.1: Particle incident on a barrier 

 

𝑉(𝑥) = 0                 𝑥 < 0 

𝑉(𝑥) =  𝑉0               𝑥 > 0 

What happens when 𝑬 > 𝑽𝟎 ? 

 

Region I:  

𝜓(𝑥) = 𝐴𝑒𝑖𝑘1𝑥 +  𝐵𝑒−𝑖𝑘1𝑥 

𝑘 = (
2𝑚𝐸

ℏ2
)

1
2

 

 

(The first term is for the particle moving to the right with the probability |𝐴|2 and momentum +ℏ𝑘; 

the second term for the particle moving towards left.) 

 

Region II: 

𝜓(𝑥) = 𝐶𝑒𝑖𝑘2𝑥 +  𝐷𝑒−𝑖𝑘2𝑥 

𝑘2 = (
2𝑚(𝐸 − 𝑉0)

ℏ2 )

1
2

 

We could exclude particles moving to the left in this region and so put 𝐷 = 0 since the problem is 

that of a particle incident on the barrier from the left.  

V0 

𝑥 = 0 𝑥 →  

I II 
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Wave function and first derivative is continuous 

𝐴 + 𝐵 = 𝐶 

𝑘1(𝐴 − 𝐵) = 𝑘2𝐶 

 

A way to think. Consider 𝑁0 particles. So |𝐴|2𝑁0 is the number of particles moving to the right. The 

rate of particles passing through a given point is 𝑣|𝐴|2𝑁0 where the velocity 𝑣 = ℏ𝑘1/𝑚.  

 

Reflection 

𝑅 =
𝑣1|𝐵|2𝑁0

𝑣1|𝐴|2𝑁0
=

|𝐵|2

|𝐴|2
= (

𝑘1 − 𝑘2

𝑘1 + 𝑘2
)

2

 

 

Transmission 

𝑇 =
𝑘2|𝐶|2

𝑘1|𝐴|2
=

4𝑘1𝑘2

(𝑘1 + 𝑘2)2
 

Particle gets reflected even though the energy 𝐸 is greater than the barrier height!!! 

What if 𝐸 < 𝑉0 ?     𝑅 = 1  

Square well potential 
 

 

 

Figure 4.2: Square well - finite potential well 
 

The height of the walls is finite,  

𝑉(𝑥) =  𝑉0                     𝑥 < −𝑎 

𝑉(𝑥) =  0                − 𝑎 ≤ 𝑥 ≤ 𝑎  

𝑎 
𝑥 →  

II III 

−𝑎 

𝑉0 𝑉0 I 
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𝑉(𝑥) =  𝑉0                      𝑥 > 𝑎 

First let us consider 𝐸 < 𝑉0 

𝑑2𝜓

𝑑𝑥2
+

2𝑚(𝐸 − 𝑉0)

ℏ2
 𝜓 = 0 

Solving this (remember the solutions for 𝐾 > 0 are a special case of 𝐾 < 0), 

𝜓𝐼 = 𝐶𝑒𝑘𝑥 

𝜓𝐼𝐼 = 𝐴′𝑒𝑖𝑘1𝑥 +  𝐵′𝑒−𝑖𝑘1𝑥 =  𝐴 cos 𝑘1𝑥 + 𝐵𝑠𝑖𝑛 𝑘1𝑥 

𝜓𝐼𝐼𝐼 = 𝐷𝑒−𝑘𝑥 

𝑘 = (
2𝑚(𝑉0 − 𝐸)

ℏ2 )

1
2

      𝑘1 =  (
2𝑚𝐸

ℏ2
)

1
2

 

which gives exponential decay/rise for the functions 𝜓𝐼 𝑎𝑛𝑑 𝜓𝐼𝐼𝐼 and oscillating solutions for 𝜓𝐼𝐼. 

Boundary conditions: Wavefunction and first derivative should be continuous. This gives two 

conditions 

𝑘1 tan 𝑘1𝑎 = 𝑘 

𝑘1 cot 𝑘1𝑎 =  −𝑘 

or  write it like, 

𝜖1/2 tan 𝜖1/2 = ( 𝑣0 −  𝜖)1/2    

where,  

𝜖 = 𝑎2𝑘1
2 =

2𝑚𝑎2𝐸

ℏ2
   

𝑣0 =  𝑎2(𝑘1
2 +  𝑘2) =

2𝑚𝑎2𝑉0

ℏ2
 

This can be solved graphically.  

Fix 𝑣0 and then plot 𝜖1/2 tan 𝜖1/2 and ( 𝑣0 −  𝜖)1/2 as a function of 𝜖 on the same graph. The points 

of intersection give the solutions.  

Similarly do it for the other equation 𝜖1/2 cot 𝜖1/2 = −( 𝑣0 −  𝜖)1/2 
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The interesting result one obtains here is that there are only a limited number of bound states, i.e. 

energy levels below the potential energy 𝑉0.  

For example, putting 𝑣0 = 12 yields 𝜖 = 1.47 𝑎𝑛𝑑 11.37 from the 𝑡𝑎𝑛 equation plot and 𝜖 = 5.68 

from the 𝑐𝑜𝑡 plot. 

Tunnelling  

  
Figure 4.3: A particle tunnelling through a barrier 
 

 𝑉(𝑥) =   {
0                     𝑥 < 0
𝑉0           0 < 𝑥 < 𝑎
0                     𝑥 > 𝑎

 

Let us worry about the situation when 𝐸 < 𝑉0 

𝜓𝐼(𝑥) = 𝐴 𝑒𝑖𝑘1𝑥 +  𝐵𝑒−𝑖𝑘1𝑥                     𝑥 < 0                      𝑘1ℏ = √2𝑚𝐸 

𝜓𝐼𝐼(𝑥) = 𝐶 𝑒𝑘2𝑥 +  𝐵𝑒−𝑘2𝑥                    0 <  𝑥 < 𝑎                      𝑘2ℏ = √2𝑚(𝑉0 − 𝐸) 

𝜓𝐼𝐼𝐼(𝑥) = 𝐸 𝑒𝑖𝑘1𝑥 +  𝐹𝑒−𝑖𝑘1𝑥                     𝑥 > 𝑎                      𝑘1ℏ = √2𝑚𝐸 

𝜓 must be continuous, 𝑑𝜓/𝑑𝑥 must be continuous --> gives 4 equations, 6 unknown coefficients 

Shoot the particles from the left, so we can put 𝐹 = 0. 

Transmission probability 

𝑇 = |
𝐸

𝐴
|

2

= {1 +
(𝑒𝑘2𝑎 − 𝑒−𝑘2𝑎)

2

16𝜖(1 − 𝜖)
 }

−1

               𝜖 =
𝐸

𝑉0
 

What happens when the barrier is high, wide? 𝑇 ≈ 16𝜖(1 − 𝜖)𝑒−2𝑘2𝑎 exponential decrease 
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Figure 4.4: Tunnelling of heavy and light particles. 

 

Tunnelling in chemistry 

1) NH3 inversion 

2) Tunnelling of protons between acid-base: enzyme catalyzed reactions 

3) DNA 

4) electron tunnelling determines the rates of electron transfer reactions 

 

Scanning Probe Microscope - STM and AFM 

   
Figure 4.5: STM e- tunnelling Figure 4.6: STM image of Cs 

atoms on GaAs surface 
Figure 4.7: AFM principle 

 


