Classical Harmonic Oscillator

Figure 5.1: Classical Harmonic Oscillator

Hooke's Law

$$
\begin{gathered}
f=-k x=-k\left(x-x_{e q}\right) \\
f=m a=-k x \\
\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0
\end{gathered}
$$

General solutions

$$
\begin{array}{cc}
x(t)=A \sin \omega t+B \cos \omega t & \omega=\sqrt{k / m} \\
x(t)=C \sin (\omega t+\phi) &
\end{array}
$$

Initial conditions:
$x(t=0)=x_{0}, \quad v_{0}=0$ spring stretched to x_{0} and released at time $t=0$. This gives,

$$
x(t)=x_{0} \cos \omega t
$$

Mass and spring (spring is assumed massless) oscillate with frequency $\omega=\sqrt{k / m}$

Energy of H.O.

Kinetic Energy

$$
K E=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}=\frac{1}{2} m\left(\omega^{2} x_{0}^{2} \sin ^{2} \omega t\right)=\frac{1}{2} k x_{0}^{2} \sin ^{2} \omega t
$$

Potential Energy (U) is given by $f(x)=-d U / d x$

$$
P E=U=-\int f(x) d x=k \int x d x=\frac{1}{2} k x^{2}=\frac{1}{2} k x_{0}^{2} \cos ^{2} \omega t
$$

$$
\text { Total Energy }=K E+P E=\frac{1}{2} k x_{0}^{2}
$$

Figure 5.2: KE, PE and Total energy

Small displacements - diatomic molecule

Figure 5.3: PE as a function of the distance

Expand $U(x)$ about the mean position x_{e}

$$
U(x)=U\left(x_{e}\right)+\left\{\left.\frac{d U}{d x}\right|_{x=x_{e}}\left(x-x_{e}\right)\right\}+\left\{\left.\frac{1}{2} \frac{d^{2} U}{d x^{2}}\right|_{x=x_{e}}\left(x-x_{e}\right)^{2}\right\}+\left\{\left.\frac{1}{3.2} \frac{d^{3} U}{d x^{3}}\right|_{x=x_{e}}\left(x-x_{e}\right)^{3}\right\}+\cdots
$$

Since the zero of potential can be defined as per our choice, lets fix $U\left(x_{e}\right)=0$.

We could shift the origin to the equilibrium position

$$
U(x)=\left\{\left.\frac{d U}{d x}\right|_{x=0} x\right\}+\left\{\left.\frac{1}{2} \frac{d^{2} U}{d x^{2}}\right|_{x=0} x^{2}\right\}+\left\{\left.\frac{1}{3.2} \frac{d^{3} U}{d x^{3}}\right|_{x=0} x^{3}\right\}+\ldots
$$

The first term goes to zero at equilibrium

Figure 5.4: H. O. approximation

For small displacements only the second term is significant enough

$$
U(x)=\left.\frac{1}{2} \frac{d^{2} U}{d x^{2}}\right|_{x=0} x^{2} \quad \text { or } \quad U(x)=\frac{1}{2} k x^{2}
$$

Center of mass and reduced mass coordinates

Figure 5.5: Center of mass (l_{0} is the undisturbed length)

For particle 1, $m_{1} \frac{d^{2} x_{1}}{d t^{2}}=k\left(x_{2}-x_{1}-l_{0}\right)$ and for particle $2, m_{2} \frac{d^{2} x_{2}}{d t^{2}}=-k\left(x_{2}-x_{1}-l_{0}\right)$
The forces are equal and opposite, $\frac{d^{2}}{d t^{2}}\left(m_{1} x_{1}+m_{2} x_{2}\right)=0$
Define the center of mass coordinate, $X=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{M}$
Then, $M \frac{d^{2} X}{d t^{2}}=0$ (The COM moves uniformly in time with constant momentum)
The relative motion of the two bodies is important, $x=x_{2}-x_{1}-l_{0}$ is the relative coordinate
This gives, $\frac{d^{2} x_{2}}{d t^{2}}-\frac{d^{2} x_{1}}{d t^{2}}=-\frac{k}{m_{2}} x-\frac{k}{m_{1}} x$ (from the above equations by dividing with the respective m)
$\frac{d^{2}}{d t^{2}}\left(x_{2}-x_{1}\right)=-k\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right) x=-\frac{k}{\mu} x \quad(\mu$ is the reduced mass)
Gives, $\mu \frac{d^{2} x}{d t^{2}}+k x=0$ (A two body problem gets reduced to a one body problem

4 | IIT Delhi - CML 100:5 - Harmonic Oscillator

$$
E_{v i b}=\frac{1}{2} \mu\left(\frac{d x}{d t}\right)^{2}+\frac{1}{2} k x^{2}
$$

Solve this problem quantum mechanically.

Schrödinger equation

$$
-\frac{\hbar^{2}}{2 \mu} \frac{d^{2} \psi}{d x^{2}}+\frac{1}{2} k x^{2} \psi=E \psi
$$

No longer are we dealing with constant coefficients
Try a solution - wild guess !!! (Gaussian function) $\rightarrow f(x)=e^{-\frac{\alpha x^{2}}{2}}$

$$
\begin{gathered}
\frac{d^{2} f}{d x^{2}}=-\alpha \exp \left(-\frac{\alpha x^{2}}{2}\right)+\alpha^{2} x^{2} \exp \left(-\frac{\alpha x^{2}}{2}\right)=-\alpha^{2} f+\alpha^{2} x^{2} f \\
\frac{d^{2} f}{d x^{2}}+\alpha f-\alpha^{2} x^{2} f=0
\end{gathered}
$$

which matches the S. E. if , $\alpha=\frac{2 \mu E}{\hbar^{2}} \quad$ and $\quad \alpha^{2}=\frac{\mu k}{\hbar^{2}} \quad$ and $E=\frac{1}{2} \hbar \omega$
Normalize the wavefunction to get

$$
\psi=\left(\frac{\alpha}{\pi}\right)^{1 / 4} \exp \left(-\frac{\alpha x^{2}}{2}\right)
$$

Figure 5.6: Lowest eigenfunction for H.O.
Symmetric function. Even function. No nodes.
What about other eigenfunctions and eigenvalues?

$$
\begin{array}{lll}
\psi_{v}(x)=N_{v} H_{v}(y) e^{-y^{2} / 2} & y^{2}=\alpha x^{2} & \alpha^{2}=\left(\mu k / \hbar^{2}\right) \\
\text { Atkin's notation } \psi_{v}(x)=N_{v} H_{v}(y) e^{-y^{2} / 2} & y^{2}=\frac{x}{\alpha} & \alpha=\left(\frac{\hbar^{2}}{2^{v} v!}\right)^{1 / 4}\left(\frac{\alpha}{\pi}\right)^{1 / 4}
\end{array}
$$

Table 9.1 The Hermite polynomials

$H_{\mathrm{v}}(y)$	
V	$H_{1}(y)$
0	1
1	$2 y$
2	$4 y^{2}-2$
3	$8 y^{3}-12 y$
4	$16 y^{4}-48 y^{2}+12$
5	$32 y^{5}-160 y^{3}+120 y$
6	$64 y^{6}-480 y^{4}+720 y^{2}-120$

Figure 9.25
Atkins Physlical Chemistry, Eighth Edition

© 2006 Peter Atbins and Juloo de Vauls

Figure 9.26
Ackims Phyical Chemiatry, Eighth Edition

- 2006 Feter Alkims and lillo de Paile

1. The Gaussian goes very strongly to zero as the displacement increases.
2. The exponent y^{2} is proportional to $x^{2} \times(m k)^{1 / 2}$. So larger masses, stiffer springs decay faster
3. As v increases, the Hermite polynomials become large at large displacements $\left(x^{v}\right)$, so wavefunctions grow till larger displacements before the exponent damps them
