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Classical Harmonic Oscillator
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Figure 5.1: Classical Harmonic Oscillator

Hooke's Law
f=—kx= —k(x—xe)
f=ma= —kx

d*x  k
dt?

General solutions

x(t) = Asinwt + B coswt 1)

k/m
x(t) = Csin(wt + ¢)
Initial conditions:
x(t=0)= x5, vy =0 springstretched to x, and released at time t = 0. This gives,
x(t) = xycoswt
Mass and spring (spring is assumed massless) oscillate with frequency w = \/k/_m
Energy of H.O.

Kinetic Energy

1 1 dxy* 1 1
KE =3 mv? = m(—) =35m (w?x¥ sin? wt) = > k x3 sin? wt

Potential Energy (U) is given by f(x) = —dU/dx

1 1
PE=1U-= —ff(x)dx=kfxdx=ikx2=§kx§coszwt
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1
Total Energy = KE + PE = 3 kx?

Figure 5.2: KE, PE and Total energy

Small displacements - diatomic molecule
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Figure 5.3: PE as a function of the distance

Expand U(x)about the mean position x,

1 d3U

1d*U ( el s
e XX 3.2 dx3

e, (x— xe)} + {EW

(x—xy} + o

du
Ux) = Ulx,) + {—
dx

X=X¢
Since the zero of potential can be defined as per our choice, lets fix U(x,) = 0.

We could shift the origin to the equilibrium position

}+ 1d*U 2] (1 d*U
o ) 2an?| _* 3.2 dx?

The first term goes to zero at equilibrium

dUu

ve) = (g,

x3} +
x=0
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real potential

'4—H.O. approximation

Figure 5.4: H. O. approximation

For small displacements only the second term is significant enough

1d%U 1
2 2
Ulx) = S dx x or Ulx)= > kx

x=0

Center of mass and reduced mass coordinates
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Figure 5.5: Center of mass (l; is the undisturbed length)

F icle 1, m, &1 =
or partlce , My ez

2
k(x, —x; —1y) and for particle 2, m, L7

iz —k(xz —x1 — lp)
.. dz?
The forces are equal and opposite, 0z (myxq +myx,) =0
. . mqx{+m-oXx mqx{+mox
Define the center of mass coordinate, X = 1m1+m2 2 — 122
1 2

M

2
Then, MZT)Z( = 0 (The COM moves uniformly in time with constant momentum)

The relative motion of the two bodies is important, x = x, — x; — [ is the relative coordinate
2

- d d? k k . s . .
This gives, xzz - le = ——x — —x (from the above equations by dividing with the respective m)
dt dt m, mq
d? 1 1 k .
m(xz —x)=—k (m_1 + m—z)x =X (u is the reduced mass)
. d?x
Gives, Loz

+ kx = 0 (A two body problem gets reduced to a one body problem
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1 dx\?
B =34 () +

Solve this problem quantum mechanically.

Schrédinger equation

—kx?

d? ax? ax?
d_x]; = —aexp <_T> + a’x?exp <_T> = —a*f + a’x*f
d*f
ezt af —a’x?f =0
which matches the S. E.if , a = ZFLLZE and a? = I;l—’; and E = % hw
Normalize the wavefunction to get
_ (E)” * o[-
T\ P 2
/ !}IO A‘)
1
= v E =—hw
b’ L
X
Figure 5.6: Lowest eigenfunction for H.O.
Symmetric function. Even function. No nodes.
What about other eigenfunctions and eigenvalues?
IIJ,,(X) = NvHv(y)e_yZ/Z yz = ax? a’ = (”k/hz) N, = Zylv,
2\ 1/4
Atkin’s notationy, (x) = N, H,(y)e " /2 y? = g a= (%
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0.5
Table 9.1 The Hermite polynomials =
H (y) 'g
Y H,(y) § 0
=
——
2
0 1 P
1 2y =
2 4};.‘ . 2 —0-5
3 8y — 12y
4 16y* — 4892 + 12
5 32y° — 160y + 120y -1.0 : : : :
6 64y5 — 480y* + 72092 — 120 -4 -2 3 2 4
Tabde -4 Figure 9-25
e o © 000 et MmO Ml Se Pl
Figure 9-26
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The Gaussian goes very strongly to zero as the displacement increases.

The exponent y? is proportional to x% X (mk)/2. So larger masses, stiffer springs decay
faster

As v increases, the Hermite polynomials become large at large displacements (x?), so
wavefunctions grow till larger displacements before the exponent damps them



