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Particle on a ring - 2D rotation
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Figure 6.1: The angular momentum

Moment of inertia: | = mr?
Energy, E = J2/2I
J, = £ pr andp = h/A (de Broglie). This gives J, = +hr/4

e Two directions of rotation

e shorter the wavelength, greater the angular momentum
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Figure 6.2: Constructive and destructive interference

The above figure gives, 1 = 2nr/m,
Therefore, J, = m;h m; =0,41,+2, ...

Energy, E = m?h?/2I
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Quantum mechanically

We solve the Schrédinger equation. Particle in a plane. The potential is zero.
h? [ 02 92
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Symmetry of the system suggests cylindrical coordinates
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Figure 6.3: Cylindrical coordinate system.x =rcos¢, y =rsin¢ , z = z. In the present case

we do not use the z-coordinate. r = \/x2 + y2,¢p = tan"1y/x

In this system, the Hamiltonian is

g M0 0%\ _ w0 19 12
— 2m\ox?  dy?) 2m\9r? ror r2dg2

of _or or 3 of
(One needs to use - = ——. -~ + 5% 3¢

P h? (1 0%\ k%[ 02
 2m\r2a¢2) 2I\0¢>2

for the derivation, which we will not worry about)

S.E.is
0%y 2IE
a2 h2
whose solutions are
im ¢ V2IE
¢ml(¢) m where my - A
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(Till now m; is not an integer. It is just a constant)

Boundary conditions: cyclic Y (¢ + 2m) = P (¢)

eim,(¢+2n’) eiml¢)_ eZniml

(9+2m) = = = P ()2 = (~ 1) ()
(e™ = —1). We require an equality in the above equation. This gives, (—1)%™ = 1. Or in other

words, 2m; must be an even integer (+ve or -ve). Or m; must be an integer.m; = 0,+1,+2, ...

Wavefunctions
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Figure 6.4: Real part of the wavefunctions - particle on a ring

The wavelength of the wavefunction with m; = 0,y = 1/4/2m is infinite.

Em, = m?h?/21|implies energy does not depend on the direction of rotation

implies A is the fundamental unit of angular momentum

Quantization of rotation

i j k
l:r)(p: X y VA
Px Py Dz

The z-component of angular momentum, [, = xp,, — yp, is represented by the operator

Interms of r, ¢
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Now operate with the angular momentum operator to find the eigenvalues.

Uncertainty in the position of the particle

We have defined the angular momentum completely so the angle (which corresponds to the

position) remains undefined. The particle could be anywhere on the ring.

The probability density of finding the particle Y, ¥y, = 1/27 which is independent of the angle ¢.

Angular momentum - Angle: complementary observables .

Momentum-Position: complementary observables | L '
| ||

Spherical polar coordinates
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Figure 6.5: Spherical coordinates

Particle moves on the surface of the sphere

. . 5 h? 2 2 92 92 92
Hamiltonian H = ~om Ve+ VvV Vv =t ot om

Y is a function of colatitute, 8 and azimuth, ¢.

2

h V2Y(6,¢) = EY(0
_% l/)( '¢)_ 1/)( r¢)

Laplacian in spherical polar coordinates
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where, the legendrian, A?is given by

1 942 1 0 )

N = —si
sin?09¢2  smoae " 39

Since 1 does not depend onr

1, 2mE
=R A Va4
, 21E
A l/) = —El/J € = ?
Separation of variables [use Y¥(0, ¢) = O(0). P (¢) ]
1 d*® sinf d de

—sinf@— + esin? § = m}

5 = -—mi  and —g=ogsind g

The first one we have seen already

The second gives solutions known as associated Legendre functions. The cyclic boundary counditions
on O give rise to another quantum number, L. Since both m; and [ are present in the second
equation, it implies they should be related. The values of m; (the magnetic quantum number) are

governed by the value of [ (the orbital angular momentum quantum number)
[=012,.. m=1L1—-1,.... ,—1 (21 + 1) values
Y1 m(6, @) are called the spherical harmonics

The solution gives the energy as

hZ
E=11+1)~r 1=0,1,2,..
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Table 9.3 The spherical harmonics

] m; Yh‘(9,¢)
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35 1/2
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<=== I=4,m,=0

Table 9-3 Figure 9-36
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Figure 9-37
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