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H-Spectra 
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Since potential is spherically symmetric, we can write,  𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌(𝜃, 𝜙) 

The equation separates and we have to solve,  
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𝑉𝑒𝑓𝑓 is made up of Coulombic and centrifugal term 

  

Figure 7.1: Effective potential and the wavefunctions at small radius 
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              Bohr radius, 𝑎0 =
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𝑅(𝑟) (is a polynomial in r) × (decaying exponential in r)    𝑅𝑛,𝑙(𝑟) =  𝑁𝑛,𝑙  𝜌𝑙  𝐿𝑛+𝑙
2𝑙+1(𝜌)𝑒−𝜌/2  
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1. exp factor: 𝜓 approaches 0 far away from the nucleus 

2. 𝜌𝑙 ensures 𝜓 is zero at the nucleus for 𝑙 ≠ 0 

3. Associated Laguerre polynomial: responsible for the nodes 
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Figure 7.2: The first few wavefunctions 

 

 

 

Figure 7.3: 1s and 2s hydrogen atomic orbitals 
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Figure 7.4: s orbital and the radial distribution function 
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𝑃(𝑟) is a probability density. When multiplied by 𝑑𝑟 it gives the probability of finding the electron in 

a thin shell.  

Most probable radius can be found by differentiation of 𝑃(𝑟) 
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Figure 7.5: The p-orbitals 

 

 

Figure 7.6: The d-orbitals 

 


