H-Spectra

$$\bar{v} = R_H \left(\frac{1}{n_1^2} + \frac{1}{n_2^2} \right) \qquad R_H = 109677 \text{ cm}^{-1}$$

The Radial solutions

Coulombic potential energy, $V = -\frac{Ze^2}{4\pi\epsilon_0 r}$

Hamiltonian,
$$\widehat{H} = \widehat{KE}_e + \widehat{KE}_N + \widehat{V} = -\frac{\hbar^2}{2m_e} \nabla_e^2 - \frac{\hbar^2}{2m_N} \nabla_N^2 - \frac{Ze^2}{4\pi\epsilon_0 r}$$

Since potential is spherically symmetric, we can write, $\psi(r, \theta, \phi) = R(r)Y(\theta, \phi)$

The equation separates and we have to solve,

$$\Lambda^2 Y = -l(l+1)Y$$
 These give rise to the spherical harmonics

and
$$-\frac{\hbar^2}{2\mu}\frac{d^2u}{dr^2} + V_{eff}u = Eu$$
, where $u = rR$ and $V_{eff} = -\frac{Ze^2}{4\pi\epsilon_0 r} + \frac{l(l+1)\hbar^2}{2\mu r^2}$

 V_{eff} is made up of Coulombic and centrifugal term

$$E = \frac{Z^2 \mu e^4}{32\pi^2 \epsilon_0^2 \hbar^2 n^2}$$

$$\rho = \frac{2Zr}{na_0}$$
 Bohr radius, $a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e e^2} = 52.9 \text{ pm}$

R(r) (is a polynomial in r) × (decaying exponential in r) $R_{n,l}(r) = N_{n,l} \rho^l L_{n+l}^{2l+1}(\rho) e^{-\rho/2}$

Orbital	n	1	R _{n,l}
15	1	0	$2\left(\frac{Z}{a}\right)^{3/2}e^{-\rho/2}$
25	2	0	$\frac{1}{8^{1/2}} \left(\frac{Z}{a}\right)^{3/2} (2-\rho) e^{-\rho/2}$
2p	2	1	$\frac{1}{24^{1/2}} \left(\frac{Z}{a}\right)^{3/2} \rho e^{-\rho/2}$
35	3	0	$\frac{1}{243^{1/2}} \left(\frac{Z}{a}\right)^{3/2} (6-6\rho+\rho^2) e^{-\rho/2}$
3p	3	1	$\frac{1}{486^{1/2}} \left(\frac{Z}{a}\right)^{3/2} (4-\rho)\rho \mathrm{e}^{-\rho/2}$
3d	3	2	$\frac{1}{2430^{1/2}} \left(\frac{Z}{a}\right)^{3/2} \rho^2 \mathrm{e}^{-\rho/2}$

 $\rho = (2Z/na)r$ with $a = 4\pi\varepsilon_0\hbar^2/\mu e^2$. For an infinitely heavy nucleus (or one that may be assumed to be so), $\mu = m_e$ and $a = a_0$, the Bohr radius. The full wavefunction is obtained by multiplying *R* by the appropriate *Y* given in Table 9.3.

Table 10-1 Atkins Physical Chemistry, Eighth Edition © 2006 Peter Atkins and Julio de Paula

- 1. exp factor: ψ approaches 0 far away from the nucleus
- 2. ρ^l ensures ψ is zero at the nucleus for $l \neq 0$
- 3. Associated Laguerre polynomial: responsible for the nodes

Figure 7.2: The first few wavefunctions

Figure 7.3: 1s and 2s hydrogen atomic orbitals

Figure 7.4: s orbital and the radial distribution function

$$P(r)dr = \int_0^{2\pi} \int_0^{\pi} R(r)^2 |Y(\theta,\phi)|^2 r^2 dr \sin\theta \ d\theta \ d\phi$$
$$= r^2 R(r)^2 dr \int_0^{2\pi} \int_0^{\pi} |Y(\theta,\phi)|^2 dr \sin\theta \ d\theta \ d\phi = r^2 R(r)^2 dr$$

P(r) is a probability density. When multiplied by dr it gives the probability of finding the electron in a thin shell.

Most probable radius can be found by differentiation of P(r)

5 | IIT Delhi - CML 100:7 - H-atom

Figure 7.5: The p-orbitals

Figure 7.6: The d-orbitals