Variation Method

Variation principle

$\frac{\int \phi^{*} \hat{H} \phi d \tau}{\int \phi^{*} \phi d \tau} \geq E_{1}$, where ϕ is any well-behaved function that satisfies the boundary conditions of the problem. This is because the wavefunction ϕ can be expanded in the basis set of the eigenfunctions of the problem, i.e. $\phi=\sum_{k} a_{k} \psi_{k}$

To get the higher states

Remove ψ_{1} from the summation, i.e. $\phi=\sum_{k=2}^{\infty} a_{k} \psi_{k}$. This can be ensured only if the trial wavefunction is orthogonal to the ground state eigenfunction, $\left\langle\psi_{1} \mid \phi\right\rangle=0$. This is quite difficult except in certain cases e.g. when alternate eigenfunctions are odd/even.

Determinants

Minor, Cofactor,
Diagonal, Block diagonal

Simultaneous Linear Equations

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \cdots \cdots \cdots \cdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

If at least one of the $b^{\prime} s$ is not equal to zero, we have a system of inhomogeneous linear equations. One could use the Cramer's rule to solve it.

$$
x_{k}=\frac{\left\lvert\, \begin{array}{lllll}
a_{11} & a_{12} \ldots & a_{1, k-1} & b_{1} & a_{1, k+1}
\end{array} \ldots a_{1 n}\right.}{a_{21}} \begin{aligned}
& a_{22}
\end{aligned} \ldots a_{2, k-1} b_{2} a_{2, k+1} \ldots a_{2 n} .
$$

Gaussian Elimination

1) Divide $1^{\text {st }}$ equation by a_{11} : Makes coefficient of x_{1} unity
2) Subtract a_{21} times the $1^{\text {st }}$ equation from the $2^{\text {nd }}$ equation. Similarly do for the rest of the equations. Now the coefficients of x_{1} are zero for all the equation except the first.
3) Repeat the above steps taking nth equation and dividing it by $a_{n n}$. Subtract only the equations below the nth equation.
4) This gives a triangular form with the last equation having only the x_{n} term equal to the RHS.
5) Substitute back and get the values of all x_{i}.
6) If all the equations are subtracted instead of only the equations below the nth equation, we get a diagonal form of the equations and the solutions can be read straightaway. This is known as the Gauss-Jordan elimination method. However, it is slower than Gaussian elimination.

Linear Homogeneous equations

If all the b 's are zeros
Trivial solution $x_{1}=x_{2}=\cdots=x_{n}=0$ when $\operatorname{det}\left(a_{i j}\right) \neq 0$
When $\operatorname{det}\left(a_{i j}\right)=0$ the solution is non-trivial

If a solution exists, $x_{k}=d_{k}$, then $x_{k}=c d_{k}$ is also a solution. Therefore, the solution contains an arbitrary constant and determination of the absolute values of the unknowns is impossible. Let us choose $x_{n}=c$ and transfer the last term of each equation to the RHS.

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1, n-1} x_{n-1}=-a_{1, n} c \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2, n-1} x_{n-1}=-a_{2, n} c \\
\cdots \\
a_{n-1,1} x_{1}+a_{n-1,2} x_{2}+\cdots+a_{n-1, n-1} x_{n-1}=-a_{n-1, n} c \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n, n-1} x_{n-1}=-a_{n, n} c
\end{gathered}
$$

Now we have n equations and $n-1$ unknowns. Discard any one equation and solve it as a linear inhomogeneous equation. The form of the solution will be $x_{1}=c e_{1}, x_{2}=c e_{2}, \ldots, x_{n-1}=$ $c e_{n-1}, x_{n}=c$

The procedure fails when the $n-1$ equation system still remains homogeneous. What to do? Introduce another constant!

Linear Variation Functions

Trial wavefunction: $\phi=c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}=\sum_{j=1}^{n} c_{j} f_{j}$
c_{j} : parameters to be determined by minimizing the variational integral, f_{j} : basis functions

$$
\int \phi^{*} \phi d \tau=\int \sum_{j=1}^{n} c_{j} f_{j} \sum_{k=1}^{n} c_{k} f_{k} d \tau=\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} \int f_{j} f_{k} d \tau
$$

Overlap integral $\quad S_{j k}=\int f_{j} f_{k} d \tau$

Numerator: $\quad \int \phi^{*} \widehat{H} \phi d \tau=\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} \int f_{j} \widehat{H} f_{k} d \tau$, where $H_{j k}=\int f_{j}^{*} \widehat{H} f_{k} d \tau$
This gives the variational integral: $\quad W \sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} S_{j k}=\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} H_{j k}$
Minimize $W\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ w.r.t. c_{i} 's. $\frac{\partial W}{\partial c_{i}}=0$

$$
\frac{\partial W}{\partial c_{i}} \sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} S_{j k}+W \frac{\partial}{\partial c_{i}} \sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} S_{j k}=\frac{\partial}{\partial c_{i}} \sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} H_{j k}, \quad i=1,2,3 \ldots, n
$$

Since c_{j} 's are independent variables, $\frac{\partial c_{j}}{\partial c_{i}}=\delta_{i j}$
implies, $\frac{\partial}{\partial c_{i}} \sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} S_{j k}=\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \delta_{i j} S_{j k}+\sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} \delta_{i k} S_{j k}=\sum_{k=1}^{n} c_{k} S_{i k}+$ $\sum_{j=1}^{n} c_{j} S_{j i}$

Real functions. Therefore $S_{j i}=S_{i j}^{*}=S_{i j}$. So above expression is, $2 \sum_{k=1}^{n} c_{k} S_{i k}$
Similarly, $\frac{\partial}{\partial c_{i}} \sum_{j=1}^{n} \sum_{k=1}^{n} c_{j} c_{k} H_{j k}=2 \sum_{k=1}^{n} c_{k} H_{i k}$

$$
\begin{gathered}
2 W \sum_{k=1}^{n} c_{k} S_{i k}=2 \sum_{k=1}^{n} c_{k} H_{i k} \\
\sum_{k=1}^{n}\left[\left(H_{i k}-S_{i k} W\right) c_{k}\right]=0, \quad i=1,2,3 \ldots . n
\end{gathered}
$$

We have a set of simultaneous, linear, homogeneous equations in the n unknowns $c_{1}, c_{2}, \ldots, c_{n}$. This is known as a secular equation. This gives rise to the secular determinant.

$$
\left|\begin{array}{cccc}
H_{11}-S_{11} W & H_{12}-S_{12} W & \ldots & H_{1 n}-S_{1 n} W \\
H_{21}-S_{21} W & H_{22}-S_{22} W & \ldots & H_{2 n}-S_{2 n} W \\
& \ldots & & \\
& \ldots & & \\
H_{n 1}-S_{n 1} W & H_{n 2}-S_{n 2} W & \ldots & H_{n n}-S_{n n} W
\end{array}\right|=0
$$

This gives n roots $W_{1} \leq W_{2} \leq \cdots \leq W_{n}$
The bound states of the system are in the order $E_{1} \leq E_{2} \leq \cdots \leq E_{n}$
Then (MacDonald's proof) $E_{1} \leq W_{1}, \quad E_{2} \leq W_{2}, \quad E_{3} \leq W_{3} \ldots$

Get one value of W. Solve for $c_{i}{ }^{\prime}$ s. Get the eigenfunction corresponding to this W.

Want more eigenvalues, use more basis funtions.

Want more accuracy, use more basis functions.

Matrices

Inverse: $A^{-1} A=A A^{-1}=1$

Symmetric: $a_{i j}=a_{j i}$
Hermitian: $d_{i j}=d_{i j}^{*}$ (Note: all symmetric matrices need not be Hermitian)
Transponse: A^{T} is the matrix formed by interchanging the rows and columns of $A . a_{i j}^{T}=a_{j i}$
Complex conjugate: $A^{*}: a_{i j}^{*}$
Conjugate transpose: $A^{\dagger}=\left(A^{*}\right)^{T}: \quad a_{i j}^{\dagger}=a_{j i}^{*}$
Orthogonal matrix: $A^{-1}=A^{T}$

Unitary matrix: $U^{-1}=U^{\dagger}$

If the $S_{i j}=\delta_{i j}$ in the set of n -homogeneous linear equations, i.e. the f_{k} 's are orthonormal, then we can write

$$
H C=C W
$$

Which gives, $C^{-1} H C=W$

The problem is then to diagonalize H.

Hückel MO theory

Case of ethane: $s p^{2}$ sigma bonded framework $+\pi$ orbitals

$$
\psi_{\pi}=c_{1} 2 p_{z A}+c_{2} 2 p_{z B}
$$

Secular determinant

$$
\left|\begin{array}{ll}
H_{11}-E S_{11} & H_{12}-E S_{12} \\
H_{21}-E S_{21} & H_{22}-E S_{22}
\end{array}\right|=0
$$

Hückel proposed: $S_{i j}=\delta_{i j}$, All Coulomb integrals $\left(H_{i i}\right)$ are the same.

$$
\left|\begin{array}{rr}
\alpha-E & \beta \\
\beta & \alpha-E
\end{array}\right|=0
$$

Gives, $E=\alpha \pm \beta$
α approximates the energy of the electron in an isolated $2 p_{z}$ orbital. It can be used as a reference point for the zero of energy. β is determined experimentally and has a value of $-75 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

