Thermodynamics: study of flow of heat

Began in 1800's, industrial revolution, fossil fuels, locomotives
Arrhenius first studied the effect of $\mathrm{CO}_{2}$ on atmosphere - humans will be in trouble in 2000 years
Developed before atoms and molecules were known
Empirical rules and laws

## Four Laws:

- $\quad 0^{\text {th }}$ Law - defines temperature, T
- $\quad 1^{\text {st }}$ Law - defines energy, U - conservation of energy
- $2^{\text {nd }}$ Law - defines entropy, $S$ - direction of time
- $3^{\text {rd }}$ Law - Numerical value to the entropy


## Systems

## Surroundings

Boundary - between the system and the surrounding
Real or imaginary boundary

## System:

- Open - allows mass and energy to freely flow through boundary
- Closed - energy flows, mass does not
- Isolated - neither flows


## Describe the system

$\mathrm{p}, \mathrm{T}, \mathrm{V}, \mathrm{n}_{\mathrm{i}}, \mathrm{m}$
Homogenous or heterogeneous system
Equilibrium system - thermodynamics talks about these
Components
glass of water with ice - one component
coffee - milk, water, sugar... multicomponent

## Extensive and Intensive properties

$\mathrm{V}, \mathrm{m}$ - double as you double the system (extensive)
T, $\bar{V}=\frac{V}{n}$ - remain the same (intensive)
State variables - does not matter how the state has been achieved

## One-component homogenous system

No. of moles, and two variables - enough to know the system

## Chemical notation

$3 \mathrm{H}_{2}\left(\mathrm{~g}, 1\right.$ bar, $\left.100^{\circ} \mathrm{C}\right)$
$5 \mathrm{H}_{2} \mathrm{O}\left(1,1\right.$ bar, $\left.25^{\circ} \mathrm{C}\right)+5 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\left(1,1\right.$ bar, $\left.25^{\circ} \mathrm{C}\right)$

From one eq. state to another
$3 \mathrm{H}_{2}\left(\mathrm{~g}, 4\right.$ bar, $\left.100^{\circ} \mathrm{C}\right) \rightleftharpoons 3 \mathrm{H}_{2}\left(\mathrm{~g}, 1 \mathrm{bar}, 50^{\circ} \mathrm{C}\right)$


## Path

- Reversible: slow
- Irreversible: sudden - gas molecules are agitated. All in different variables - also defines the direction of time

Some types of paths

- Adiabatic - no heat exchange
- Isobaric - constant pressure
- Isothermal - constant temperature


## $0^{\text {th }}$ Law



If $A$ and $B$ are in thermal eq. and $B$ and $C$ are in thermal eq. then $A$ and $C$ will also be in thermal eq.
This allows us to define temperature - B could be a thermometer
Concept of thermometer
Measurement of thermometer
Definition of scales: ${ }^{\circ} \mathrm{C}, \mathrm{K},{ }^{\circ} \mathrm{F}$

Requirements for a thermometer


1) Material - e.g. Hg
2) Property f(t) - e.g. Volume
3) Reference points - e.g. mp, bp
4) Interpolation scheme

## Temperature Scale

2 points of reference and then interpolation
Centigrade/Celcius: Vol. of Hg, freezing and boiling point of water
Romer (Denmark): 7.5 Romer freezing of water, 22.5 Romer temperature of warm blood

Fahrenheit (German): multiplied the Romer scale by 4 and then by 16/15 - m.p. $32{ }^{\circ} \mathrm{F}$, b.p. 212 , under armpit for a healthy human 96 (actually it is 98.6)

## Ideal Gas Thermometer

$$
f(t)=\lim _{p \rightarrow 0} p \bar{V}
$$

Absolute zero $=0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$

So lets change the zero to 0 K .
Linear in $\mathrm{T} \therefore \lim _{p \rightarrow 0} p \bar{V}=f(T)=R T(\mathrm{pV}$ is constant at a given T -> Boyle's Law)
or $p \bar{V}=R T$ Ideal Gas


Boyle's Law: $\mathrm{pV}=$ constant, at given $\mathrm{n}, \mathrm{T}$
Charle's Law: $V=$ const $x T$, at given $n, p$

$$
\mathrm{P}=\text { const } \times \mathrm{T}, \text { at given } \mathrm{n}, \mathrm{~V}
$$

Boyle's and Charle's Laws are limiting cases as $p \rightarrow 0$.
Avogadro's principle: $\mathrm{V}=$ const x n at given $\mathrm{p}, \mathrm{T}$ (Equal volumes of gases at the same p and T contain the same numbers of molecules)






Dalton's Law:
Partial pressure of a gas in a mixture (ideal, real) $p_{J}=x_{J} p_{t o t}$. When all gases are ideal - "The pressure exerted by a mixture of gases is the sum of the pressures that each one would exert if it occupied the container alone"

## Compression factor $\mathbf{Z}$

$\frac{p \bar{V}}{R T}=Z$ or $Z=\bar{V} / \bar{V}_{I G}$ i.e. molar volume if gas were ideal
Low $\mathrm{p}, Z \approx 1$ molecules are far apart and there are no intermolecular forces

High p, $Z>1$ indicating repulsion between molecules, therefore V is larger

Intermediate $\mathrm{p}, Z<1$ implies attractive forces are dominant


## Virial Expansion

$$
p \bar{V}=R T\left(1+B^{\prime} p+C^{\prime} p^{2}+\cdots\right)
$$

At low pressures, large molar volumes or high temperature, this reduces to the I.G. EOS

Alternately, in terms of molar volume,

$$
p V=R T\left(1+\frac{B}{\bar{V}}+\frac{C}{\bar{V}^{2}}+\cdots\right)
$$

Usually, the $2^{\text {nd }}$ coefficient is important
When B is ignored, I.G. EOS is obtained. However, many properties depend on the $1^{\text {st }}$ derivative

e.g. $\frac{d Z}{d p}=B^{\prime}+2 p C^{\prime}+\ldots \quad \rightarrow B^{\prime} \quad$ as $p \rightarrow 0$ (For I.G. this would approach 0 )

Coefficients are temperature dependent
Some temperature at which $B \rightarrow 0$, then $Z \rightarrow 1$. This is the Boyle's temperature, which of course is at
low p, high V.


Condensation occurs moving on the line ABC by pushing a piston. At C , the gas is in equilibrium with the liquid and the piston slips towards CDE without any change in pressure. This pressure is called the vapour pressure of the liquid at that Temperature.

If compression is carried out at critical temperature, the two phases are not formed. $T>T_{C}$ supercritical fluid.

## Van der Waals equation

To account for the volume of the gas molecules, $\quad p\left(V_{m}-b\right)=R T$
To account for the attractions between the gas molecules, $\quad p\left(V_{m}-b\right)=R T-a / V_{m}^{2}$
The vdW EOS describes the isotherms as in the figure. Below $T_{C}$ some loops appear because of the cubic nature of the equation. A method described as Maxwell construction is used to correct this.


1) IG isotherms at high $T$, large $V_{m}$
2) Liquids and gases coexist when attraction and repulsions cancel (loops form when the two terms cancel)
3) Critical constants are related to vdW's coefficients Critical point is an inflexion point. Hence, first and second derivatives should both be zero.


$$
\begin{aligned}
\frac{d p}{d V_{m}} & =\frac{R T}{\left(V_{m}-b\right)^{2}}+\frac{2 a}{V_{m}^{3}}=0 \\
\frac{d^{2} p}{d V_{m}^{2}} & =\frac{2 R T}{\left(V_{m}-b\right)^{3}}-\frac{6 a}{V_{m}^{4}}=0
\end{aligned}
$$

Which gives, $V_{C}=3 b, \quad p_{C}=\frac{a}{27 b^{2}} \quad T_{C}=\frac{8 a}{27 R b} \quad$ and $Z_{C}=\frac{p_{C} V_{C}}{R T_{C}}=\frac{3}{8}$ for all gases
Principle of Corresponding States
Reduced variables $\rightarrow$ divide by the critical value. e.g. $p_{r}=p / p_{C}$
Real gases at same $T_{r}$ and $V_{r}$ exert the same $p_{r} \rightarrow$ principle of corresponding states
Express vdW eqn in terms of reduced variables $p_{r} p_{C}=\frac{R T_{r} T_{C}}{V_{r} V_{C}-b}-\frac{a}{V_{r}^{2} V_{C}^{2}}$
Then introduce the vdW coefficients in place of the critical constants $\frac{a p_{r}}{27 b^{2}}=\frac{8 a T_{r}}{27 b\left(3 b V_{r}-b\right)}-\frac{a}{9 b^{2} V_{r}^{2}}$
On rearranging, $p_{r}=\frac{8 T_{r}}{3 V_{r}-1}-\frac{3}{V_{r}^{2}}$ which does not depend on the nature of the gas!!!

The labels are $T_{r}{ }^{\prime} \mathrm{s}$


