First Law CML 100, IIT Delhi

Internal Energy
The total energy of the system. Contribution from translation + rotation + vibrations.
Equipartition theorem for the translation and rotational degrees of freedom. 1/2 kgT
Work
Path function, not a state function
oW = —PexedV

Notation

When system does work to the surroundings: negative (expansion)

When surroundings does work on the system: positive (compression)

Two paths - compression

Work done in first path: w = — f;:l p,dV — f;l exthO: o) ol
—p1(V1 —V2) 0 0 0
Work done in second path w = —%dv — f‘Zl podV = g g
—p2(V1 — V2) A, - )
Connect the two paths

SS

_

w=—-p; (V1 - VZ) +p, (Vl - Vz) *+0 VﬂVOIume v,
$dw #0 -
P2
P1 —
Heat
Another path function v,  Volume v,

The First Law
dU = f dq+dw =0

AU=q+w

The internal energy of an isolated system is constant. U is a state function. U Does not depend on
path.

Volume
V1 V2
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We need two variables (other than the number of moles) to define a state function U = U(T,V)

U is an extensive quantity. However, U /n is intensive

Temperature

variation of U

\ Slope of U

au

Since U = U(T, V), we can write |dU = (E)V dT + (‘3—5)T av

versus T at
\ constant V

In general [dU = dq + dWexp + dWexird]

The extra work could be electrical, chemical...

Internal energy, U

Lets keep the volume constant i.e. dw,,,, = 0 and ensure no additional
work i.e. dWeyirg = 0 - -

-~

7t
Then, dU = dq or dU = dgqy \;‘01 me, V

R
Pergy
tu,o =
5

We are measuring a change in the internal energy by supplying heat to the
system

Also, we can write, dU = (Z—Z)V dT at constant V. Define C, = (a—U)V

aT
SO, qu = CvdT

Isothermal Expansions

a) Free expansion, against vacuum: pey; = 0 &« dw = —pe,edV = 0

b) Irreversibe expansion

v

% %
Aw = —pextdV = —pydV andw = fVlz —p2dV = —p, fVlz dV = —p,(V2 = V1)

™ b
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First Law
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Irreversible expansion — 2 steps

c)

\\\ww\

AN

ainsseld

Volume
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Volume

V1

pdV

V2

J,
dav = —nRTf

DextdV =

V2

oo
Vi

For an Ideal Gas

£
Vi

—nRT In

Vaqv
v

1

V2 V2nRT
v = —
p f v
1 1
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w =
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Joule Expansion
ou au

In the expression, dU = (E)V dT + (W)T av,

au . (0U

- ] - ?

(aT)V is Cy, . Now what is (av)T ?

Lets construct an experiment to determine (g—g) also known as Il
T

So here we have an adiabatic wall

andw =20
iee AU=0

So, dU = CydT + IydV = 0

ie.lly = (57). = ¢ (57), = ¢y

Now we can determine II; as we can measure the change in T as a function of V.

Joule found this 1, to be zero for all the gases.

Foran I.G. U is only a function of T - U(T) = U(0) + %RT (for a monatomic IG) and

hence Joule’s results are correct for an IG. However, not so for a real gas (we will see later).

Enthalpy, H (a state function)
AU = q+w = q — pAV — VAp = q, — pAV (constant pressure)

A(U+pV)= AH = q,

. . oH oH
Since, H = H(p,T) we can write dH = (E)p dT + ($)T dp =
CpdT + urdp Upstream ms:‘r}eam
pressure
The heat capacity at constant pressure, C,, = (Z—I;) / =L \
14 &- ‘ - A
. - OHY .
The isothermal Joule-Thomson coefficient, pu; = (5) is
T
determined by the Joule-Thomson experiment.
Conditions of the J-T experiment & x—’-”
a) Adiabatic
b) w=piV1-p,V;
AndAU =q+w =0+p,V; —p,V, = =A(pV) - -
Therefore, A(U 4+ pV) = 0 = AH ' AT  g—f

i.e. Constant enthalpy experiment
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dH—CdT+(aH> dp =0
14 apT p

.<0H) _ C(&T) _ ¢
" ap T_ p ap H_ oyt

Change in temperature with change in pressure = can be measured.

T
For IG: = (—) =0 €00 -
#]T dp H [ |‘1M0IF‘J)
' lptomion
For van der Waals gas: = S | N
— 7 ’--.,t\ S— aco{ \Ll\
0H 2a = >
(o) -2 == w2 |\
ap T RT Sl oaso N\ Sem— ]
g MER———— b

Which gi —p-22 = E \ u<o 20 4

ICN gIVES, U;r = b — Rl é 91‘:","9- e \_){// /"\-.-.r.-xA
0 i.e. the inversion el //' g Lo

2 = r—— P
temperature,  Tipp = — P e o 7ok
Rb Heating 0 200 400

2 . 2 D ¥
If Z<bieT>= . - piatm

RT Rb Pr

essure, p
AT . .
(E) < 0 i.e.gas heats on expanding.
H

A positive p implies a cooling on expansion. Principle: Gas expands = molecules move apart
but are attracted to each other = hence lose some KE - slow down =» cool down. This is
true when attractive interactions are dominant.

a) ldeal gas, reversible

Given

Adiabatic expansions -

dq = 0 (adiabatic)

dw = —pdV (reversible)
dU = C,dT (I.G.one mole)
dU = —pdV (First Law)

This gives, CydT = —pdV = —%dv

R
- ing. 2= (&)
On integrating, o (V_z)
A
C —Co = L_(hyo (A —C./Co
C, — Cy = R and therefore i (V_z) = (V_z) wherey = C,,/Cy
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Which gives, |TV”‘1 = constant |(for 1 mole gas)

Since y — 1 is always positive, adiabatic expansion = gas cools. Should be expected because gas
does work and no heat is exchanged. So internal energy must decrease implying a decrease in T.

Since T = PV/R we can rearrange |PVY = constant]

P
Isotherm:; PV = constant "
[0}
Adiabat: PVY = constant 2
(%]
o
Sincey > 1 at the same pressure, adiabatic expansion b

gives a lower volume

Irreversible Adiabatic Expansion
dg=0
dw = —p,dV
dU = C,dT = —p,dV

Which gives, T, (Cy + R) =T, (CV + %R) the gas still cools on expansionas T; > T,
1

Now, since — (Wyep,) > —(W;), Which one gets us to a lower T, irr or rev adiabatic expansion?

What would happen if we carried out irr adiabatic expansion against vacuum?
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State functions and exact differentials

State functions: depend on the state and not how the state has been formed. e.g. internal energy,
enthalpy. Does not matter how | reach the state. Whether | change T first and hold the V' constant and

then change V at constant T or | change V at constant T and then change T holding the V constant, |

end up at the same value of U. i.e ou _ o%u
P Tt aTav T avar

Path functions: are not for the state but for the way the state has been achieved. e.g. work, heat



