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Internal Energy 

The total energy of the system. Contribution from translation + rotation + vibrations. 

Equipartition theorem for the translation and rotational degrees of freedom. 1/2 𝑘𝐵𝑇 

Work 

Path function, not a state function 

ð𝑤 =  −𝑝𝑒𝑥𝑡𝑑𝑉 

Notation 

 When system does work to the surroundings: negative (expansion) 

 When surroundings does work on the system: positive (compression) 

Two paths - compression 

 

Work done in first path: 𝑤 =  − ∫ 𝑝1𝑑𝑉
𝑉1

𝑉2
− ∫ 𝑝𝑒𝑥𝑡𝑑𝑉

𝑉1

𝑉1
=

 −𝑝1(𝑉1 − 𝑉2) 

Work done in second path 𝑤 =  − ∫ 𝑝𝑒𝑥𝑡𝑑𝑉
𝑉2

𝑉2
− ∫ 𝑝2𝑑𝑉

𝑉1

𝑉2
=

 −𝑝2(𝑉1 −  𝑉2) 

Connect the two paths 

𝑤 = −𝑝1(𝑉1 − 𝑉2) + 𝑝2(𝑉1 − 𝑉2) ≠ 0 

 ∮ 𝑑𝑤 ≠ 0 

 

 

Heat 

Another path function 

 

The First Law  

𝑑𝑈 = ∮ 𝑑𝑞 + 𝑑𝑤 = 0 

Δ𝑈 = 𝑞 + 𝑤 

The internal energy of an isolated system is constant. 𝑈 is a state function. 𝑈 Does not depend on 

path. 
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We need two variables (other than the number of moles) to define a state function 𝑈 = 𝑈(𝑇, 𝑉) 

𝑈 is an extensive quantity. However, 𝑈/𝑛 is intensive 

Since 𝑈 = 𝑈(𝑇, 𝑉), we can write 𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉  

In general 𝑑𝑈 = 𝑑𝑞 + 𝑑𝑤𝑒𝑥𝑝 +  𝑑𝑤𝑒𝑥𝑡𝑟𝑎  

The extra work could be electrical, chemical... 

Lets keep the volume constant i.e. 𝑑𝑤𝑒𝑥𝑝 = 0 and ensure no additional 

work i.e. 𝑑𝑤𝑒𝑥𝑡𝑟𝑎 = 0 

Then, 𝑑𝑈 = 𝑑𝑞 or 𝑑𝑈 = 𝑑𝑞𝑉  

We are measuring a change in the internal energy by supplying heat to the 

system 

Also, we can write, 𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 at constant V. Define 𝐶𝑉 = (

𝜕𝑈

𝜕𝑇
)

𝑉
 

So, 𝑑𝑞𝑉 = 𝐶𝑉𝑑𝑇   

 

Isothermal Expansions 

a) Free expansion, against vacuum: 𝑝𝑒𝑥𝑡 = 0 ∴ 𝑑𝑤 = −𝑝𝑒𝑥𝑡𝑑𝑉 = 0 

 

b) Irreversibe expansion 

 

 

 

 

 

 

 

 

 

𝑑𝑤 =  −𝑝𝑒𝑥𝑡𝑑𝑉 =  −𝑝2𝑑𝑉 and 𝑤 =  ∫ −𝑝2 𝑑𝑉
𝑉2

𝑉1
=  −𝑝2 ∫  𝑑𝑉

𝑉2

𝑉1
=  −𝑝2(𝑉2 − 𝑉1) 

 

P1, V1 

P2 

P2 

P2, V2 
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c) Irreversible expansion – 2 steps 
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𝑤 =  −𝑝3(𝑉3 − 𝑉1) − 𝑝2(𝑉2 − 𝑉3)   more work than single step expansion 

 

d) Reversible expansion 
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𝑤 = − ∫ 𝑝𝑒𝑥𝑡𝑑𝑉
𝑉2

𝑉1

=  − ∫ 𝑝𝑑𝑉
𝑉2

𝑉1

 

For an Ideal Gas 

𝑤 =  − ∫ 𝑝𝑑𝑉
𝑉2

𝑉1

=  − ∫
𝑛𝑅𝑇

𝑉
𝑑𝑉

𝑉2

𝑉1

=  −𝑛𝑅𝑇 ∫
𝑑𝑉

𝑉

𝑉2

𝑉1

=  −𝑛𝑅𝑇 ln
𝑉2

𝑉1
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Joule Expansion 

In the expression,  𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉,  

(
𝜕𝑈

𝜕𝑇
)

𝑉
 𝑖𝑠 𝐶𝑉 . Now what is (

𝜕𝑈

𝜕𝑉
)

𝑇
 ? 

Lets construct an experiment to determine (
𝜕𝑈

𝜕𝑉
)

𝑇
 also known as Π𝑇 

So here we have an adiabatic wall 

∴ 𝑞 = 0   

and 𝑤 = 0 

i.e. Δ𝑈 = 0 

So, 𝑑𝑈 = 𝐶𝑉𝑑𝑇 + Π𝑇𝑑𝑉 = 0 

i.e. Π𝑇 = (
𝜕𝑈

𝜕𝑉
)

𝑇
=  −𝐶𝑉 (

𝜕𝑇

𝜕𝑉
)

𝑈
=  −𝐶𝑉𝜂𝐽   

Now we can determine  Π𝑇 as we can measure the change in T as a function of V.  

Joule found this 𝜂𝐽 to be zero for all the gases.  

For an I.G. 𝑈 is only a function of T   𝑈(𝑇) =  𝑈(0) +
3

2
𝑅𝑇 (for a monatomic IG) and 

hence Joule’s results are correct for an IG. However, not so for a real gas (we will see later). 

 

Enthalpy, H (a state function) 

Δ𝑈 = 𝑞 + 𝑤 = 𝑞 − 𝑝Δ𝑉 − 𝑉Δ𝑝 = 𝑞𝑝 − 𝑝Δ𝑉 (constant pressure) 

Δ(𝑈 + 𝑝𝑉) =  Δ𝐻 =  𝑞𝑝 

Since,  𝐻 = 𝐻(𝑝, 𝑇) we can write 𝑑𝐻 = (
𝜕𝐻

𝜕𝑇
)

𝑝
𝑑𝑇 + (

𝜕𝐻

𝜕𝑝
)

𝑇
𝑑𝑝 =

𝐶𝑝𝑑𝑇 + 𝜇𝑇𝑑𝑝 

The heat capacity at constant pressure, 𝐶𝑝 = (
𝜕𝐻

𝜕𝑇
)

𝑝
 

The isothermal Joule-Thomson coefficient, 𝜇𝑇 = (
𝜕𝐻

𝜕𝑝
)

𝑇
 is 

determined by the Joule-Thomson experiment. 

Conditions of the J-T experiment 

a) Adiabatic 

b) 𝑤 = 𝑝1𝑉1 − 𝑝2𝑉2 

And Δ𝑈 = 𝑞 + 𝑤 = 0 + 𝑝1𝑉1 − 𝑝2𝑉2 =  −Δ(𝑝𝑉) 

Therefore, Δ(𝑈 + 𝑝𝑉) =  0 = Δ𝐻 

i.e. Constant enthalpy experiment 

 

Vacuu

m 
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𝑑𝐻 = 𝐶𝑝𝑑𝑇 + (
𝜕𝐻

𝜕𝑝
)

𝑇

𝑑𝑝 = 0 

∴  (
𝜕𝐻

𝜕𝑝
)

𝑇

=  −𝐶𝑝 (
𝜕𝑇

𝜕𝑝
)

𝐻

=  −𝐶𝑝𝜇𝐽𝑇 

Change in temperature with change in pressure  can be measured. 

For IG:       𝜇𝐽𝑇 = (
𝜕𝑇

𝜕𝑝
)

𝐻
= 0 

For van der Waals gas:     

(
𝜕𝐻

𝜕𝑝
)

𝑇

≈ 𝑏 −
2𝑎

𝑅𝑇
 

Which gives,   𝜇𝐽𝑇 = 𝑏 −
2𝑎

𝑅𝑇𝑖𝑛𝑣
=

0  i.e. the inversion 

temperature,  𝑇𝑖𝑛𝑣 =
2𝑎

𝑅𝑏
 

If   
2𝑎

𝑅𝑇
< 𝑏  i.e. 𝑇 >

2𝑎

𝑅𝑏
       ∴

(
Δ𝑇

Δ𝑝
)

𝐻
< 0    i.e. gas heats on expanding. 

A positive 𝜇 implies a cooling on expansion. Principle: Gas expands  molecules move apart 

but are attracted to each other  hence lose some KE  slow down  cool down. This is 

true when attractive interactions are dominant. 

 

Adiabatic expansions 

a) Ideal gas, reversible 

Given 

 𝑑𝑞 = 0 (𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐) 

 𝑑𝑤 =  −𝑝𝑑𝑉 (𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒) 

 𝑑𝑈 = 𝐶𝑉
̅̅ ̅𝑑𝑇 (𝐼. 𝐺. 𝑜𝑛𝑒 𝑚𝑜𝑙𝑒)  

  𝑑𝑈 =  −𝑝𝑑𝑉 (𝐹𝑖𝑟𝑠𝑡 𝐿𝑎𝑤)  

 This gives,  𝐶𝑉
̅̅ ̅𝑑𝑇 =  −𝑝𝑑𝑉 =  −

𝑅𝑇

�̅�
𝑑𝑉  

On integrating,  
𝑇2

𝑇1
= (

𝑉1̅̅ ̅

𝑉2̅̅ ̅
)

𝑅

𝐶𝑉̅̅̅̅̅
  

𝐶𝑝
̅̅ ̅ − 𝐶𝑉

̅̅ ̅ = 𝑅   and therefore   
𝑇2

𝑇1
= (

𝑉1̅̅ ̅

𝑉2̅̅ ̅
)

𝐶𝑝̅̅ ̅̅ −𝐶𝑉̅̅̅̅̅

𝐶𝑉̅̅̅̅̅
=  (

𝑉1̅̅ ̅

𝑉2̅̅ ̅
)

𝛾−1

  where 𝛾 = 𝐶𝑝
̅̅ ̅/𝐶𝑉

̅̅ ̅ 

P1, V1 

P2 

P2, V2 

P2 
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Which gives,    𝑇𝑉𝛾−1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (for 1 mole gas) 

Since 𝛾 − 1 is always positive, adiabatic expansion  gas cools. Should be expected because gas 

does work and no heat is exchanged. So internal energy must decrease implying a decrease in T. 

Since 𝑇 = 𝑃𝑉/𝑅  we can rearrange   𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   

 

Isotherm: 𝑃𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Adiabat: 𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Since 𝛾 > 1   at the same pressure, adiabatic expansion 

gives a lower volume 

 

 

Irreversible Adiabatic Expansion 

𝑑𝑞 = 0 

𝑑𝑤 =  −𝑝2𝑑𝑉 

𝑑𝑈 = 𝐶𝑉𝑑𝑇 =  −𝑝2𝑑𝑉 

Which gives, 𝑇1(𝐶𝑉 + 𝑅) = 𝑇2 (𝐶𝑉 +
𝑝2

𝑝1
𝑅)    the gas still cools on expansion as 𝑇1 > 𝑇2 

Now, since – (𝑤𝑟𝑒𝑣) >  −(𝑤𝑖𝑟𝑟), which one gets us to a lower T, irr or rev adiabatic expansion? 

What would happen if we carried out irr adiabatic expansion against vacuum? 
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State functions and exact differentials 

State functions: depend on the state and not how the state has been formed. e.g. internal energy, 

enthalpy. Does not matter how I reach the state. Whether I change 𝑇 first and hold the 𝑉 constant and 

then change 𝑉 at constant 𝑇 or I change 𝑉 at constant 𝑇 and then change 𝑇 holding the 𝑉 constant, I 

end up at the same value of 𝑈. i.e. 
𝜕2𝑈

𝜕𝑇𝜕𝑉
=

𝜕2𝑈

𝜕𝑉𝜕𝑇
 

Path functions: are not for the state but for the way the state has been achieved. e.g. work, heat 

 


