Internal Energy

The total energy of the system. Contribution from translation + rotation + vibrations.
Equipartition theorem for the translation and rotational degrees of freedom. $1 / 2 k_{B} T$

Work

Path function, not a state function

$$
\partial w=-p_{\text {ext }} d V
$$

Notation

When system does work to the surroundings: negative (expansion)
When surroundings does work on the system: positive (compression)
Two paths - compression

Work done in first path: $w=-\int_{V_{2}}^{V_{1}} p_{1} d V-\int_{V_{1}}^{V_{1}} \int_{\text {ext }}^{0} d V=$ $-p_{1}\left(V_{1}-V_{2}\right)$
Work done in second path $w=-\int_{\frac{V_{2}}{2}}^{V_{\text {ext }}} d V-\int_{V_{2}}^{V_{1}} p_{2} d V=$ $-p_{2}\left(V_{1}-V_{2}\right)$

Connect the two paths
$w=-p_{1}\left(V_{1}-V_{2}\right)+p_{2}\left(V_{1}-V_{2}\right) \neq 0$

$\oint d w \neq 0$

Heat

Another path function

The First Law

$$
\begin{gathered}
d U=\oint d q+d w=0 \\
\Delta U=q+w
\end{gathered}
$$

The internal energy of an isolated system is constant. U is a state function. U Does not depend on path.

We need two variables (other than the number of moles) to define a state function $U=U(T, V)$
U is an extensive quantity. However, U / n is intensive
Since $U=U(T, V)$, we can write $d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V$
In general $d U=d q+d w_{\text {exp }}+d w_{\text {extra }}$
The extra work could be electrical, chemical...
Lets keep the volume constant i.e. $d w_{\exp }=0$ and ensure no additional work i.e. $d w_{\text {extra }}=0$

Then, $d U=d q$ or $d U=d q_{V}$

We are measuring a change in the internal energy by supplying heat to the system

Also, we can write, $d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T$ at constant V. Define $C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}$
So, $d q_{V}=C_{V} d T$

Isothermal Expansions

a) Free expansion, against vacuum: $p_{\text {ext }}=0 \therefore d w=-p_{\text {ext }} d V=0$
b) Irreversibe expansion

$$
d w=-p_{e x t} d V=-p_{2} d V \text { and } w=\int_{V_{1}}^{V_{2}}-p_{2} d V=-p_{2} \int_{V_{1}}^{V_{2}} d V=-p_{2}\left(V_{2}-V_{1}\right)
$$

c) Irreversible expansion - 2 steps

$w=-p_{3}\left(V_{3}-V_{1}\right)-p_{2}\left(V_{2}-V_{3}\right)$ more work than single step expansion
d) Reversible expansion

For an Ideal Gas

$$
w=-\int_{V_{1}}^{V_{2}} p d V=-\int_{V_{1}}^{V_{2}} \frac{n R T}{V} d V=-n R T \int_{V_{1}}^{V_{2}} \frac{d V}{V}=-n R T \ln \frac{V_{2}}{V_{1}}
$$

Joule Expansion

In the expression, $d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V$,
$\left(\frac{\partial U}{\partial T}\right)_{V}$ is C_{V}. Now what is $\left(\frac{\partial U}{\partial V}\right)_{T}$?
Lets construct an experiment to determine $\left(\frac{\partial U}{\partial V}\right)_{T}$ also known as Π_{T}
So here we have an adiabatic wall
$\therefore q=0$
and $w=0$
i.e. $\Delta U=0$

So, $d U=C_{V} d T+\Pi_{T} d V=0$

Now we can determine Π_{T} as we can measure the change in T as a function of V.
Joule found this η_{J} to be zero for all the gases.
For an I.G. U is only a function of $\mathrm{T} \rightarrow U(T)=U(0)+\frac{3}{2} R T$ (for a monatomic IG) and hence Joule's results are correct for an IG. However, not so for a real gas (we will see later).

Enthalpy, H (a state function)

$$
\begin{gathered}
\Delta U=q+w=q-p \Delta V-V \Delta p=q_{p}-p \Delta V(\text { constant pressure }) \\
\Delta(U+p V)=\Delta H=q_{p}
\end{gathered}
$$

Since, $H=H(p, T)$ we can write $d H=\left(\frac{\partial H}{\partial T}\right)_{p} d T+\left(\frac{\partial H}{\partial p}\right)_{T} d p=$ $C_{p} d T+\mu_{T} d p$

The heat capacity at constant pressure, $C_{p}=\left(\frac{\partial H}{\partial T}\right)_{p}$
The isothermal Joule-Thomson coefficient, $\mu_{T}=\left(\frac{\partial H}{\partial p}\right)_{T}$ is determined by the Joule-Thomson experiment.

Conditions of the J-T experiment
a) Adiabatic
b) $w=p_{1} V 1-p_{2} V_{2}$

And $\Delta U=q+w=0+p_{1} V_{1}-p_{2} V_{2}=-\Delta(p V)$
Therefore, $\Delta(U+p V)=0=\Delta H$
i.e. Constant enthalpy experiment

$$
\begin{gathered}
d H=C_{p} d T+\left(\frac{\partial H}{\partial p}\right)_{T} d p=0 \\
\therefore\left(\frac{\partial H}{\partial p}\right)_{T}=-C_{p}\left(\frac{\partial T}{\partial p}\right)_{H}=-C_{p} \mu_{J T}
\end{gathered}
$$

Change in temperature with change in pressure \rightarrow can be measured.
For IG: $\quad \mu_{J T}=\left(\frac{\partial T}{\partial p}\right)_{H}=0$
For van der Waals gas:

$$
\left(\frac{\partial H}{\partial p}\right)_{T} \approx b-\frac{2 a}{R T}
$$

Which gives, $\mu_{J T}=b-\frac{2 a}{R T_{i n v}}=$ $0 \quad$ i.e. the inversion temperature, $\quad T_{i n v}=\frac{2 a}{R b}$

If $\frac{2 a}{R T}<b$ i.e. $T>\frac{2 a}{R b} \quad \therefore$ $\left(\frac{\Delta T}{\Delta p}\right)_{H}<0 \quad$ i.e. gas heats on

expanding.

A positive μ implies a cooling on expansion. Principle: Gas expands \rightarrow molecules move apart but are attracted to each other \rightarrow hence lose some KE \rightarrow slow down \rightarrow cool down. This is true when attractive interactions are dominant.

Adiabatic expansions

a) Ideal gas, reversible

Given

$$
\begin{aligned}
d q & =0(\text { adiabatic }) \\
d w & =-p d V(\text { reversible }) \\
d U & =\overline{C_{V}} d T(\text { I.G.one mole }) \\
d U & =-p d V(\text { First Law })
\end{aligned}
$$

This gives, $\overline{C_{V}} d T=-p d V=-\frac{R T}{\bar{V}} d V$
On integrating, $\frac{T_{2}}{T_{1}}=\left(\frac{\overline{V_{1}}}{\overline{V_{2}}}\right)^{\frac{R}{C_{V}}}$
$\overline{C_{p}}-\overline{C_{V}}=R$ and therefore $\frac{T_{2}}{T_{1}}=\left(\frac{\overline{V_{1}}}{\overline{V_{2}}}\right)^{\frac{\overline{c_{p}}-\overline{C_{V}}}{\overline{C_{V}}}}=\left(\frac{\overline{V_{1}}}{\overline{V_{2}}}\right)^{\gamma-1}$ where $\gamma=\overline{C_{p}} / \overline{C_{V}}$

Which gives, $\quad T^{\gamma-1}=$ constant (for 1 mole gas)
Since $\gamma-1$ is always positive, adiabatic expansion \rightarrow gas cools. Should be expected because gas does work and no heat is exchanged. So internal energy must decrease implying a decrease in T .

Since $T=P V / R$ we can rearrange $P V^{\gamma}=$ constant

Isotherm: $P V=$ constant
Adiabat: $P V^{\gamma}=$ constant
Since $\gamma>1$ at the same pressure, adiabatic expansion gives a lower volume

Irreversible Adiabatic Expansion

$$
\begin{gathered}
d q=0 \\
d w=-p_{2} d V \\
d U=C_{V} d T=-p_{2} d V
\end{gathered}
$$

Which gives, $T_{1}\left(C_{V}+R\right)=T_{2}\left(C_{V}+\frac{p_{2}}{p_{1}} R\right)$ the gas still cools on expansion as $T_{1}>T_{2}$
Now, since $-\left(w_{\text {rev }}\right)>-\left(w_{i r r}\right)$, which one gets us to a lower T, irr or rev adiabatic expansion?
What would happen if we carried out irr adiabatic expansion against vacuum?

State functions and exact differentials

State functions: depend on the state and not how the state has been formed. e.g. internal energy, enthalpy. Does not matter how I reach the state. Whether I change T first and hold the V constant and then change V at constant T or I change V at constant T and then change T holding the V constant, I end up at the same value of U. i.e. $\frac{\partial^{2} U}{\partial T \partial V}=\frac{\partial^{2} U}{\partial V \partial T}$

Path functions: are not for the state but for the way the state has been achieved. e.g. work, heat

