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Internal Energy 

The total energy of the system. Contribution from translation + rotation + vibrations. 

Equipartition theorem for the translation and rotational degrees of freedom. 1/2 𝑘𝐵𝑇 

Work 

Path function, not a state function 

ð𝑤 =  −𝑝𝑒𝑥𝑡𝑑𝑉 

Notation 

 When system does work to the surroundings: negative (expansion) 

 When surroundings does work on the system: positive (compression) 

Two paths - compression 

 

Work done in first path: 𝑤 =  − ∫ 𝑝1𝑑𝑉
𝑉1

𝑉2
− ∫ 𝑝𝑒𝑥𝑡𝑑𝑉

𝑉1

𝑉1
=

 −𝑝1(𝑉1 − 𝑉2) 

Work done in second path 𝑤 =  − ∫ 𝑝𝑒𝑥𝑡𝑑𝑉
𝑉2

𝑉2
− ∫ 𝑝2𝑑𝑉

𝑉1

𝑉2
=

 −𝑝2(𝑉1 −  𝑉2) 

Connect the two paths 

𝑤 = −𝑝1(𝑉1 − 𝑉2) + 𝑝2(𝑉1 − 𝑉2) ≠ 0 

 ∮ 𝑑𝑤 ≠ 0 

 

 

Heat 

Another path function 

 

The First Law  

𝑑𝑈 = ∮ 𝑑𝑞 + 𝑑𝑤 = 0 

Δ𝑈 = 𝑞 + 𝑤 

The internal energy of an isolated system is constant. 𝑈 is a state function. 𝑈 Does not depend on 

path. 
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We need two variables (other than the number of moles) to define a state function 𝑈 = 𝑈(𝑇, 𝑉) 

𝑈 is an extensive quantity. However, 𝑈/𝑛 is intensive 

Since 𝑈 = 𝑈(𝑇, 𝑉), we can write 𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉  

In general 𝑑𝑈 = 𝑑𝑞 + 𝑑𝑤𝑒𝑥𝑝 +  𝑑𝑤𝑒𝑥𝑡𝑟𝑎  

The extra work could be electrical, chemical... 

Lets keep the volume constant i.e. 𝑑𝑤𝑒𝑥𝑝 = 0 and ensure no additional 

work i.e. 𝑑𝑤𝑒𝑥𝑡𝑟𝑎 = 0 

Then, 𝑑𝑈 = 𝑑𝑞 or 𝑑𝑈 = 𝑑𝑞𝑉  

We are measuring a change in the internal energy by supplying heat to the 

system 

Also, we can write, 𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 at constant V. Define 𝐶𝑉 = (

𝜕𝑈

𝜕𝑇
)

𝑉
 

So, 𝑑𝑞𝑉 = 𝐶𝑉𝑑𝑇   

 

Isothermal Expansions 

a) Free expansion, against vacuum: 𝑝𝑒𝑥𝑡 = 0 ∴ 𝑑𝑤 = −𝑝𝑒𝑥𝑡𝑑𝑉 = 0 

 

b) Irreversibe expansion 

 

 

 

 

 

 

 

 

 

𝑑𝑤 =  −𝑝𝑒𝑥𝑡𝑑𝑉 =  −𝑝2𝑑𝑉 and 𝑤 =  ∫ −𝑝2 𝑑𝑉
𝑉2

𝑉1
=  −𝑝2 ∫  𝑑𝑉

𝑉2

𝑉1
=  −𝑝2(𝑉2 − 𝑉1) 

 

P1, V1 

P2 

P2 

P2, V2 
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c) Irreversible expansion – 2 steps 
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𝑤 =  −𝑝3(𝑉3 − 𝑉1) − 𝑝2(𝑉2 − 𝑉3)   more work than single step expansion 

 

d) Reversible expansion 
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𝑤 = − ∫ 𝑝𝑒𝑥𝑡𝑑𝑉
𝑉2

𝑉1

=  − ∫ 𝑝𝑑𝑉
𝑉2

𝑉1

 

For an Ideal Gas 

𝑤 =  − ∫ 𝑝𝑑𝑉
𝑉2

𝑉1

=  − ∫
𝑛𝑅𝑇

𝑉
𝑑𝑉

𝑉2

𝑉1

=  −𝑛𝑅𝑇 ∫
𝑑𝑉

𝑉

𝑉2

𝑉1

=  −𝑛𝑅𝑇 ln
𝑉2

𝑉1
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Joule Expansion 

In the expression,  𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉,  

(
𝜕𝑈

𝜕𝑇
)

𝑉
 𝑖𝑠 𝐶𝑉 . Now what is (

𝜕𝑈

𝜕𝑉
)

𝑇
 ? 

Lets construct an experiment to determine (
𝜕𝑈

𝜕𝑉
)

𝑇
 also known as Π𝑇 

So here we have an adiabatic wall 

∴ 𝑞 = 0   

and 𝑤 = 0 

i.e. Δ𝑈 = 0 

So, 𝑑𝑈 = 𝐶𝑉𝑑𝑇 + Π𝑇𝑑𝑉 = 0 

i.e. Π𝑇 = (
𝜕𝑈

𝜕𝑉
)

𝑇
=  −𝐶𝑉 (

𝜕𝑇

𝜕𝑉
)

𝑈
=  −𝐶𝑉𝜂𝐽   

Now we can determine  Π𝑇 as we can measure the change in T as a function of V.  

Joule found this 𝜂𝐽 to be zero for all the gases.  

For an I.G. 𝑈 is only a function of T   𝑈(𝑇) =  𝑈(0) +
3

2
𝑅𝑇 (for a monatomic IG) and 

hence Joule’s results are correct for an IG. However, not so for a real gas (we will see later). 

 

Enthalpy, H (a state function) 

Δ𝑈 = 𝑞 + 𝑤 = 𝑞 − 𝑝Δ𝑉 − 𝑉Δ𝑝 = 𝑞𝑝 − 𝑝Δ𝑉 (constant pressure) 

Δ(𝑈 + 𝑝𝑉) =  Δ𝐻 =  𝑞𝑝 

Since,  𝐻 = 𝐻(𝑝, 𝑇) we can write 𝑑𝐻 = (
𝜕𝐻

𝜕𝑇
)

𝑝
𝑑𝑇 + (

𝜕𝐻

𝜕𝑝
)

𝑇
𝑑𝑝 =

𝐶𝑝𝑑𝑇 + 𝜇𝑇𝑑𝑝 

The heat capacity at constant pressure, 𝐶𝑝 = (
𝜕𝐻

𝜕𝑇
)

𝑝
 

The isothermal Joule-Thomson coefficient, 𝜇𝑇 = (
𝜕𝐻

𝜕𝑝
)

𝑇
 is 

determined by the Joule-Thomson experiment. 

Conditions of the J-T experiment 

a) Adiabatic 

b) 𝑤 = 𝑝1𝑉1 − 𝑝2𝑉2 

And Δ𝑈 = 𝑞 + 𝑤 = 0 + 𝑝1𝑉1 − 𝑝2𝑉2 =  −Δ(𝑝𝑉) 

Therefore, Δ(𝑈 + 𝑝𝑉) =  0 = Δ𝐻 

i.e. Constant enthalpy experiment 

 

Vacuu

m 



First Law CML 100, IIT Delhi SS 

5 
 

𝑑𝐻 = 𝐶𝑝𝑑𝑇 + (
𝜕𝐻

𝜕𝑝
)

𝑇

𝑑𝑝 = 0 

∴  (
𝜕𝐻

𝜕𝑝
)

𝑇

=  −𝐶𝑝 (
𝜕𝑇

𝜕𝑝
)

𝐻

=  −𝐶𝑝𝜇𝐽𝑇 

Change in temperature with change in pressure  can be measured. 

For IG:       𝜇𝐽𝑇 = (
𝜕𝑇

𝜕𝑝
)

𝐻
= 0 

For van der Waals gas:     

(
𝜕𝐻

𝜕𝑝
)

𝑇

≈ 𝑏 −
2𝑎

𝑅𝑇
 

Which gives,   𝜇𝐽𝑇 = 𝑏 −
2𝑎

𝑅𝑇𝑖𝑛𝑣
=

0  i.e. the inversion 

temperature,  𝑇𝑖𝑛𝑣 =
2𝑎

𝑅𝑏
 

If   
2𝑎

𝑅𝑇
< 𝑏  i.e. 𝑇 >

2𝑎

𝑅𝑏
       ∴

(
Δ𝑇

Δ𝑝
)

𝐻
< 0    i.e. gas heats on expanding. 

A positive 𝜇 implies a cooling on expansion. Principle: Gas expands  molecules move apart 

but are attracted to each other  hence lose some KE  slow down  cool down. This is 

true when attractive interactions are dominant. 

 

Adiabatic expansions 

a) Ideal gas, reversible 

Given 

 𝑑𝑞 = 0 (𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐) 

 𝑑𝑤 =  −𝑝𝑑𝑉 (𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑏𝑙𝑒) 

 𝑑𝑈 = 𝐶𝑉
̅̅ ̅𝑑𝑇 (𝐼. 𝐺. 𝑜𝑛𝑒 𝑚𝑜𝑙𝑒)  

  𝑑𝑈 =  −𝑝𝑑𝑉 (𝐹𝑖𝑟𝑠𝑡 𝐿𝑎𝑤)  

 This gives,  𝐶𝑉
̅̅ ̅𝑑𝑇 =  −𝑝𝑑𝑉 =  −

𝑅𝑇

𝑉̅
𝑑𝑉  

On integrating,  
𝑇2

𝑇1
= (

𝑉1̅̅ ̅

𝑉2̅̅ ̅
)

𝑅

𝐶𝑉̅̅̅̅̅
  

𝐶𝑝
̅̅ ̅ − 𝐶𝑉

̅̅ ̅ = 𝑅   and therefore   
𝑇2

𝑇1
= (

𝑉1̅̅ ̅

𝑉2̅̅ ̅
)

𝐶𝑝̅̅ ̅̅ −𝐶𝑉̅̅̅̅̅

𝐶𝑉̅̅̅̅̅
=  (

𝑉1̅̅ ̅

𝑉2̅̅ ̅
)

𝛾−1

  where 𝛾 = 𝐶𝑝
̅̅ ̅/𝐶𝑉

̅̅ ̅ 

P1, V1 

P2 

P2, V2 

P2 



First Law CML 100, IIT Delhi SS 

6 
 

Which gives,    𝑇𝑉𝛾−1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (for 1 mole gas) 

Since 𝛾 − 1 is always positive, adiabatic expansion  gas cools. Should be expected because gas 

does work and no heat is exchanged. So internal energy must decrease implying a decrease in T. 

Since 𝑇 = 𝑃𝑉/𝑅  we can rearrange   𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   

 

Isotherm: 𝑃𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Adiabat: 𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Since 𝛾 > 1   at the same pressure, adiabatic expansion 

gives a lower volume 

 

 

Irreversible Adiabatic Expansion 

𝑑𝑞 = 0 

𝑑𝑤 =  −𝑝2𝑑𝑉 

𝑑𝑈 = 𝐶𝑉𝑑𝑇 =  −𝑝2𝑑𝑉 

Which gives, 𝑇1(𝐶𝑉 + 𝑅) = 𝑇2 (𝐶𝑉 +
𝑝2

𝑝1
𝑅)    the gas still cools on expansion as 𝑇1 > 𝑇2 

Now, since – (𝑤𝑟𝑒𝑣) >  −(𝑤𝑖𝑟𝑟), which one gets us to a lower T, irr or rev adiabatic expansion? 

What would happen if we carried out irr adiabatic expansion against vacuum? 

  

P
re
s
s
u
re

VolumeV
1

V
2

P
2

P
1

adiabat

isotherm



First Law CML 100, IIT Delhi SS 

7 
 

State functions and exact differentials 

State functions: depend on the state and not how the state has been formed. e.g. internal energy, 

enthalpy. Does not matter how I reach the state. Whether I change 𝑇 first and hold the 𝑉 constant and 

then change 𝑉 at constant 𝑇 or I change 𝑉 at constant 𝑇 and then change 𝑇 holding the 𝑉 constant, I 

end up at the same value of 𝑈. i.e. 
𝜕2𝑈

𝜕𝑇𝜕𝑉
=

𝜕2𝑈

𝜕𝑉𝜕𝑇
 

Path functions: are not for the state but for the way the state has been achieved. e.g. work, heat 

 


