Entropy

Mixing of an I.G. at constant T and p

$$n_A A(g,V,T) + n_B B(g,V,T) \rightarrow n_{A+B}(A+B)(g,V,T)$$

To find $\Delta S_{mixing} \rightarrow$ find a reversible path

Demixing?

 $\Delta S_{demixing} = -\Delta S_{mixing}$

For the reverse process, $\Delta U = 0 \Rightarrow q_{rev} = -w_{rev} = p_A dV_A + p_B dV_B$ (compression of each)

$$\Delta S_{demixing} = \int \frac{dq_{rev}}{T} = \int_{V}^{V_A} \frac{p_A dV_A}{T} + \int_{V}^{V_B} \frac{p_B dV_B}{T} = n_A R \ln \frac{V_A}{V} + n_B R \ln \frac{V_B}{V}$$

In terms of mole fractions, $X_i = \frac{n_i}{n}$ and $X_i = \frac{V_i}{V}$

 $\Delta S_{demixing} = nR[X_A \ln X_A + X_B \ln X_B]$

Since $X_i < 1$, $\Delta S_{demixing} < 0$, $\Delta S_{mixing} > 0$ (mixed state is more disordered)

Irreversible phase change at constant T and p

e.g. H₂O (l, -10 °C, 1 bar) \rightarrow H₂O (s, -10 °C, 1 bar) --- spontaneous and irreversible Find a reversible path.

Take water to H₂O (*l*, 0 °C, 1 bar) by heating reversibly, $dq_{rev} = C_{p,l}dT$ Convert to H₂O (*s*, 0 °C, 1 bar) reversible phase transformation $q_{rev} = -\Delta H_{fus}$ Cool down to H₂O (*s*, -10 °C, 1 bar) reversible cooling, $dq_{rev} = C_{p,s}dT$ SS

Measurement of Entropy

$$S(T) = S(0) + \int_{0}^{T_{f}} \frac{C_{p,s}dT}{T} + \frac{\Delta_{fus}H}{T_{f}} + \int_{T_{f}}^{T_{b}} \frac{C_{p,l}dT}{T} + \frac{\Delta_{vap}H}{T_{b}} + \int_{T_{b}}^{T} \frac{C_{p,g}dT}{T}$$

The Third Law

Nernst Heat Theorem: The entropy changes accompanying any physical or chemical transformation approaches zero as the temperature approaches zero: $\Delta S \rightarrow 0$ as $T \rightarrow 0$ provided all the substances involved are perfectly crystalline.

The entropy of all perfect crystalline substances is zero at T = 0.