CML 100

The fundamental equations

 $dU = dq_{rev} + dw_{rev} = TdS - pdV \rightarrow$ applicable to any process since dU is a state function For irr. Changes, TdS > dq and -pdV > dw, but the sum dq + dw remains the same. Seems U(S, V) is a natural choice

$$dU = \left(\frac{\partial U}{\partial S}\right)_V dS + \left(\frac{\partial U}{\partial V}\right)_S dV; \quad \left(\frac{\partial U}{\partial S}\right)_V = T \quad and \quad \left(\frac{\partial U}{\partial V}\right)_S = -p$$

Since *U* is a state function, the above equation gives, $\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial p}{\partial S}\right)_V$

$$dH = dU + d(pV) = TdS - pdV + pdV + Vdp = TdS + Vdp$$

$$dH = \left(\frac{\partial H}{\partial S}\right)_p dS + \left(\frac{\partial H}{\partial p}\right)_S dp; \quad \left(\frac{\partial H}{\partial S}\right)_p = T \quad and \quad \left(\frac{\partial H}{\partial p}\right)_S = V$$

Since *H* is a state function, the above equation gives, $\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}$

$$dA = dU - d(TS) = TdS - pdV - TdS - SdT = -pdV - SdT$$
$$dA = \left(\frac{\partial A}{\partial V}\right)_T dV + \left(\frac{\partial A}{\partial T}\right)_V dT; \quad \left(\frac{\partial A}{\partial T}\right)_V = -S \quad and \quad \left(\frac{\partial A}{\partial V}\right)_T = -p$$

Since *A* is a state function, the above equation gives, $\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial s}{\partial V}\right)_T$

$$dG = dH - d(TS) = TdS + Vdp - TdS - SdT = Vdp - SdT$$

$$dG = \left(\frac{\partial G}{\partial p}\right)_T dp + \left(\frac{\partial G}{\partial T}\right)_p dT; \quad \left(\frac{\partial G}{\partial T}\right)_p = -S \quad and \quad \left(\frac{\partial G}{\partial p}\right)_T = V$$

Since *G* is a state function, the above equation gives, $\left(\frac{\partial V}{\partial T}\right)_p = \left(\frac{\partial S}{\partial p}\right)_T$

The equations in blue are the Maxwell relations.

Table 3.5 The Maxwell relations

From U:	$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial p}{\partial S}\right)_{V}$
From H:	$\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p}$
From A:	$\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$
From G:	$\left(\frac{\partial V}{\partial T}\right)_p = -\left(\frac{\partial S}{\partial p}\right)_T$

Failed 3-0 desce Physics Charteles, Ballete (altrust 2, 2011 Televinistics and Advint Parts

Some examples

We saw the variation of U as a function of V.

 $dU = \left(\frac{\partial U}{\partial S}\right)_V dS + \left(\frac{\partial U}{\partial V}\right)_S dV \text{ gives,} \quad \left(\frac{\partial U}{\partial V}\right)_T = \left(\frac{\partial U}{\partial S}\right)_V \left(\frac{\partial S}{\partial V}\right)_T + \left(\frac{\partial U}{\partial V}\right)_S \rightarrow \quad \pi_T = T \left(\frac{\partial p}{\partial T}\right)_V - p. \text{ This is a thermodynamic equation of state.}$

For an I.G. $\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial (nRT/V)}{\partial T}\right)_V = \frac{nR}{V}$ \therefore $\pi_T = \frac{nRT}{V} - p = 0$ For a van der Waals gas, $p = \frac{nRT}{V-nb} - \frac{an^2}{V^2}$ $\rightarrow \left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial (nRT/(V-nb))}{\partial T}\right)_V = \frac{nR}{V-nb}$ \therefore $\pi_T = \frac{nRT}{V-nb} - p = \frac{nRT}{V-nb} - \left(\frac{nRT}{V-nb} - \frac{an^2}{V^2}\right) = \frac{an^2}{V^2}$

Focusing on the Gibbs Free Energy

$$\left(\frac{\partial G}{\partial T}\right)_p = -S \quad and \quad \left(\frac{\partial G}{\partial p}\right)_T = V$$

S is always +ve. G dec. as T is increased

G dec. more if entropy is large. It dec. more for gases than solids

Since V > 0, G always inc. when p is inc., G being more sensitive when the V is large (i.e. gases)

G as a function of T

$$\left(\frac{\partial G}{\partial T}\right)_p = -S = \frac{G - H}{T}$$

The equilibrium constant is related to G/T

$$\begin{pmatrix} \frac{\partial(G/T)}{\partial T} \end{pmatrix}_{p} = -\frac{H}{T^{2}} \quad Gibbs - Helmholtz \ equation$$

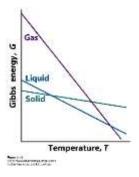
$$\begin{pmatrix} \frac{\partial(G/T)}{\partial T} \end{pmatrix}_{p} = \frac{1}{T} \begin{pmatrix} \frac{\partial G}{\partial T} \end{pmatrix}_{p} + G \frac{d(1/T)}{dT} = \frac{1}{T} \begin{pmatrix} \frac{\partial G}{\partial T} \end{pmatrix}_{p} - \frac{G}{T^{2}} = \frac{1}{T} \left\{ \begin{pmatrix} \frac{\partial G}{\partial T} \end{pmatrix}_{p} - \frac{G}{T} \right\} = \frac{1}{T} \left\{ \frac{G - H}{T} - \frac{G}{T} \right\} = -\frac{H}{T^{2}}$$

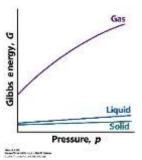
$$\begin{cases} \frac{\partial(\Delta G/T)}{\partial T} \\ \frac{\partial T}{\partial T} \end{cases}_{p} = -\frac{\Delta H}{T^{2}}$$

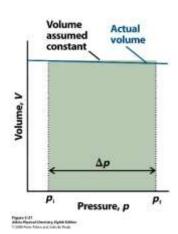
G as a function of p

At constant T,
$$\left(\frac{\partial G}{\partial p}\right)_T = V$$
. $G_m(p_f) = G_m(p_i) + \int_{p_i}^{p_f} V_m dp$

For condensed phases V_m is essentially constant. So not much change in G_m







For gases it does. For an I.G.,

$$G_m(p_f) = G_m(p_i) + RT \int_{p_i}^{p_f} \frac{1}{p} dp = G_m(p_i) + RT \ln \frac{p_f}{p_i}$$

Set $p_i = p^0$ (standard pressure)

