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Physical transformations 

Phase diagrams 

Number of phases 

 Gases – one single phase (even gaseous mixtures) 

 Solids – one solid one phase, two solids – two phases. Mixture of solids could be a single 

phase if the distribution of the components in uniform on a microscopic scale 

 Liquids – miscible liquids form a single phase 

e.g. CaCO3(s) → CaO(s) + CO2(g) is a 3-phase system. 

 

At equilibrium, the chemical potential of a substance is the same 

throughout a sample, regardless of how many phases are present. 

 

For a one-component system, 𝜇 = 𝐺̅. For more components we will 

define later. 

At eq. Δ𝐺 must be 0. For two phases, 𝑑𝐺 = (𝜇2 − 𝜇1)𝑑𝑛 implies 

transfer of 𝑑𝑛 moles of material from one phase to the other. 

𝑑𝐺 = 0 will be true when 𝜇2 = 𝜇1. 

 

The phase rule 

𝐹 = 𝐶 − 𝑃 + 2;  𝐹 is the degrees of freedom, 𝐶 the number of components and 𝑃 the number of 

phases. 

Component: Chemically independent constituent of a system. The # of components is the minimum 

no. of independent species necessary to define the composition of all the phases present in the 

system. E.g. NaCl in water has only two components Na+ and H2O as no. of Cl- ions equals the no. of 

Na+ ions. 

Single component, single phase system 𝐹 = 2. We can change pressure and temperature 

independently of each other.  

For an equilibrium between two phases (e.g. solid-liquid), if we change T, then p will follow on the s-l 

equilibrium curve. ∴ 𝐹 = 1. 𝜇(𝑠, 𝑝. 𝑇) = 𝜇(𝑙, 𝑝, 𝑇) gives one equation that relates p and T. 
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For an equilibrium between the three phases, 𝐹 = 0. For example, 𝑇3 of water occurs at 273.16 K, 

611 mbar. 𝜇(𝑠, 𝑝. 𝑇) = 𝜇(𝑙, 𝑝, 𝑇) = 𝜇(𝑔, 𝑝, 𝑇) gives two independent equations which give a unique 

solution for p and T. 

Derivation 

The total no. of intensive variables: p and T, count as 2. In each phase the mole fractions of 𝐶 − 1 

components make it 𝑃(𝐶 − 1). So total 𝑃(𝐶 − 1) + 2. 

At equilibrium, the chemical potential of a component must be the same in each phase, i.e. 

𝜇(𝛼, 𝑝, 𝑇) = 𝜇(𝛽, 𝑝, 𝑇) = ⋯ for 𝑃 phases. Implies we need to satisfy 𝑃 − 1 such equations for each 

component. For all components we need to remove 𝐶(𝑃 − 1) degrees of freedom. 

𝐹 = 𝑃(𝐶 − 1) + 2 − 𝐶(𝑃 − 1) = 𝐶 − 𝑃 + 2 

 

  

Temperature dependence of phase stability 

(
𝜕𝜇

𝜕𝑇
)

𝑝
= −𝑆𝑚. Explains the s-l-v phase stability 

Response of melting to applied pressure 

(
𝜕𝜇

𝜕𝑝
)

𝑇
= 𝑉𝑚. Usually the 𝑉𝑚(𝑙) > 𝑉𝑚(𝑠). So, m.p. inc. on application of pressure. 
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Location of phase boundaries 

At eq. the changes in chemical potential of the two phases must be equal: 𝑑𝜇(𝛼) = 𝑑𝜇(𝛽) 

i.e. −𝑆𝑚(𝛼)𝑑𝑇 + 𝑉𝑚(𝛼)𝑑𝑝 = −𝑆𝑚(𝛽)𝑑𝑇 + 𝑉𝑚(𝛽)𝑑𝑝 

or {𝑉𝑚(𝛽) − 𝑉𝑚(𝛼)}𝑑𝑝 = {𝑆𝑚(𝛽) − 𝑆𝑚(𝛼)}𝑑𝑇 

𝑑𝑝

𝑑𝑇
=

Δ𝑡𝑟𝑠𝑆

Δ𝑡𝑟𝑠𝑉
             𝐶𝑙𝑎𝑝𝑒𝑦𝑟𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

Solid-liquid boundary  

𝑑𝑝

𝑑𝑇
=

Δ𝑓𝑢𝑠𝐻

𝑇Δ𝑓𝑢𝑠𝑉
 

Δ𝐻𝑓𝑢𝑠 is +ve and Δ𝑉𝑓𝑢𝑠 is usually +ve and always small. So, v. steep 

slope. Assume Δ𝐻 𝑎𝑛𝑑 Δ𝑉 do not change much with 𝑇.  

∫ 𝑑𝑝

𝑝

𝑝∗

=
Δ𝑓𝑢𝑠𝐻

Δ𝑓𝑢𝑠𝑉
 ∫

𝑑𝑇

𝑇

𝑇

𝑇∗

    →     𝑝 = 𝑝∗ +
Δ𝑓𝑢𝑠𝐻

Δ𝑓𝑢𝑠𝑉
ln

𝑇

𝑇∗
     

For small 𝑥, ln(1 + 𝑥) = 𝑥,   ln
𝑇

𝑇∗ = ln(1 +
𝑇−𝑇∗

𝑇∗ ) =
𝑇−𝑇∗

𝑇∗  

Therefore, 𝑝 = 𝑝∗ +
Δ𝑓𝑢𝑠𝐻

𝑇∗Δ𝑓𝑢𝑠𝑉
 (𝑇 − 𝑇∗),  a steep straight line equation. 

Liquid-vapor boundary  

𝑑𝑝

𝑑𝑇
=

Δ𝑣𝑎𝑝𝐻

𝑇Δ𝑣𝑎𝑝𝑉
 

Enthalpy change is +ve, volume change is large and +ve. 𝑑𝑝/𝑑𝑇 is +ve 

but small. Or 𝑑𝑇/𝑑𝑝 is large. i.e. the boiling temp. is more responsive 

to pressure than the freezing temperature. 

 

𝑉𝑚(𝑔) ≫ 𝑉𝑚(𝑙). Therefore, Δ𝑣𝑎𝑝𝑉~𝑉𝑚(𝑔) 

𝑑𝑝

𝑑𝑇
=

Δ𝑣𝑎𝑝𝐻

𝑇𝑉𝑚(𝑔)
=

𝑑𝑝

𝑑𝑇
=

Δ𝑣𝑎𝑝𝐻

𝑇(𝑅𝑇/𝑝)
 (𝑓𝑜𝑟 𝐼. 𝐺. )       →          

 
𝑑 ln 𝑝

𝑑𝑇
=

Δ𝑣𝑎𝑝𝐻

𝑅𝑇2
    𝐶𝑙𝑎𝑢𝑠𝑖𝑢𝑠 𝐶𝑙𝑎𝑝𝑒𝑦𝑟𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 

∫ 𝑑 ln 𝑝

ln 𝑝

ln 𝑝∗

=
Δ𝑣𝑎𝑝𝐻

𝑅
∫

𝑑𝑇

𝑇2

𝑇

𝑇∗

= − 
Δ𝑣𝑎𝑝𝐻

𝑅
 (

1

𝑇
−

1

𝑇∗
) 

𝑝 = 𝑝∗ exp −𝜒       𝑤ℎ𝑒𝑟𝑒     𝜒 =
Δ𝑣𝑎𝑝𝐻

𝑅
(

1

𝑇
−

1

𝑇∗
) 

Similar is the solid-vapor boundary 
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Ehrenfest classification 

First order phase transition: the first derivative of the chemical potential with respect to 

temperature is discontinuous. 

Second order phase transition: The first derivative is continuous but not the second derivative 

 

  


