Equilibrium: Single Component CML 100 SS

Physical transformations
Phase diagrams
Number of phases
Gases — one single phase (even gaseous mixtures)

Solids — one solid one phase, two solids — two phases. Mixture of solids could be a single
phase if the distribution of the components in uniform on a microscopic scale

Liquids — miscible liquids form a single phase

e.g. CaC03(s) = Ca0(s) + CO,(g) is a 3-phase system.

At equilibrium, the chemical potential of a substance is the same

throughout a sample, regardless of how many phases are present. \
—t—Same
_ chemical
For a one-component system, ¢ = G. For more components we will potential

define later.

At eq. AG must be 0. For two phases, dG = (4, — y,)dn implies
transfer of dn moles of material from one phase to the other.

dG = 0 will be true when p; = ;.
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The phase rule

F = C — P+ 2; F isthe degrees of freedom, C the number of components and P the number of
phases.

Component: Chemically independent constituent of a system. The # of components is the minimum
no. of independent species necessary to define the composition of all the phases present in the
system. E.g. NaCl in water has only two components Na+ and H20 as no. of Cl- ions equals the no. of

Na+ ions.

Single component, single phase system F = 2. We can change pressure and temperature
independently of each other.

For an equilibrium between two phases (e.g. solid-liquid), if we change T, then p will follow on the s-I
equilibrium curve. . F = 1. u(s,p.T) = u(l,p, T) gives one equation that relates p and T.
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For an equilibrium between the three phases, F = 0. For example, T3 of water occurs at 273.16 K,

SS

611 mbar. u(s,p.T) = u(l,p,T) = u(g,p, T) gives two independent equations which give a unique

solution forpand T.

Derivation

The total no. of intensive variables: p and T, count as 2. In each phase the mole fractions of C — 1

components make it P(C — 1). So total P(C — 1) + 2.

At equilibrium, the chemical potential of a component must be the same in each phase, i.e.

u(a,p, T) = u(B,p,T) = - for P phases. Implies we need to satisfy P — 1 such equations for each

component. For all components we need to remove C(P — 1) degrees of freedom.

F=P(C-1)4+2-C(P-1)=C—-P+2
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Temperature dependence of phase stability

(6_#) = —Sp,. Explains the s-I-v phase stability
T/

Response of melting to applied pressure

(g—g) = V.. Usually the V,, (1) > V;,,(s). So, m.p. inc. on application of pressure.
T

1 2| High S High
= Solid ® | pressure 8 N\ Ppressure
€ B 5 8
] Liquid 8 ]
8 § = Low \
8 Gas S , 8| pressure
£ E - : E :
& o : : (]
= E — : i -4
o < : Q
Solid Liguid Gas : ;
stable _ stable stable | —
AR P . J— €

T T, S T
Temperature, T Temperature, T Temperature, T



Equilibrium: Single Component CML 100 SS

Location of phase boundaries

At eq. the changes in chemical potential of the two phases must be equal: du(a) = du(B)
i.e. =Sy (@)dT + Vi, (@)dp = =S, (B)AT + V,,,(B)dp
or {Vm(ﬁ) - Vm(a)}dp = {Sm(ﬁ) - Sm(a)}dT

dp AmS Clapeyron equation
dT ~ A4V peyroneq
Solid-liquid boundary
dp AquH
dar — TApysV Q
o
AHpy is +ve and AVpyq is usually +ve and always small. So, v. steep :2,
slope. Assume AH and AV do not change much with T. A&_’
_ A dT AryH T
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Temperature, T
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For small x,In(1 + x) = x, lnF = In(1 =
Therefore, p = p* + - f”S - (T —T"), asteep straight line equation.
Liquid-vapor boundary
d_p _ ApapH
dT  ThyepV a Liquid
Enthalpy change is +ve, volume change is large and +ve. dp/dT is +ve 9:-:
but small. Or dT /dp is large. i.e. the boiling temp. is more responsive § =
to pressure than the freezing temperature. a Gas
Vm(g) > Vm(l)- Therefore, AvapV~Vm(g) Temperature, T
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Similar is the solid-vapor boundary
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Ehrenfest classification

First order phase transition: the first derivative of the chemical potential with respect to
temperature is discontinuous.

Second order phase transition: The first derivative is continuous but not the second derivative
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