Partial molar volume

Add $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ to a large quantity of water $\rightarrow V_{m}$ of pure $\mathrm{H}_{2} \mathrm{O}$ is 18 ml .
Add $1 \mathrm{~mol}_{2} \mathrm{O}$ to a large quantity of $\mathrm{EtOH} \rightarrow$ increase of volume is only 14 ml . Reason is packing of molecules. $14 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ is the partial molar volume of water in pure ethanol.

$$
V_{J}=\left(\frac{\partial V}{\partial n}\right)_{p, T, n^{\prime}}
$$

The partial molar volume is the slope of the plot of the total volume as the amount of J is changed, all other parameters being kept constant. It depends on the composition.

The total volume of a two-component mixture changes by

$$
d V=\left(\frac{\partial V}{\partial n_{A}}\right)_{p, T, n_{B}} d n_{A}+\left(\frac{\partial V}{\partial n_{B}}\right)_{p, T, n_{A}} d n_{B}
$$

Provided the relative composition is held constant as the amounts of A and B are increased, the final volume is

$$
V=\int_{0}^{n_{A}} V_{A} d n_{A}+\int_{0}^{n_{B}} V_{B} d n_{B}=V_{A} \int_{0}^{n_{A}} d n_{A}+V_{B} \int_{0}^{n_{B}} d n_{B}=V_{A} n_{A}+V_{B} n_{B}
$$

Partial molar volumes can be -ve. E.g. 1 mol MgSO_{4} added to a large quantity of water results in a decrease in the volume by 1.4 ml .

Partial molar Gibbs energy

$$
\begin{gathered}
\mu_{J}=\left(\frac{\partial G}{\partial n_{J}}\right)_{p, T, n^{\prime}} \\
G=n_{A} \mu_{A}+n_{B} \mu_{B} \\
d G=V d p-S d T+\mu_{A} d n_{A}+\mu_{B} d n_{B}+\cdots \\
d G=\mu_{A} d n_{A}+\mu_{B} d n_{B}+\cdots \quad \text { at constant } T \text { and } p
\end{gathered}
$$

Also equals the $w_{a d d, \max }$ as seen earlier.

Not just G

Since $G=U+p V-T S$

$$
\begin{gathered}
d U=-p d V-V d p+S d T+T d S+d G \\
=-p d V-V d p+S d T+T d S+V d p-S d T+\mu_{A} d n_{A}+\mu_{B} d n_{B}+\cdots \\
=-p d V+T d S+\mu_{A} d n_{A}+\mu_{B} d n_{B}+\cdots \\
d U=\mu_{A} d n_{A}+\mu_{B} d n_{B}+\cdots \quad \text { at constant } V \text { and } S \\
\therefore \mu_{J}=\left(\frac{\partial U}{\partial n_{J}}\right)_{V, S, n^{\prime}} \text { Also, } \mu_{J}=\left(\frac{\partial H}{\partial n_{J}}\right)_{p, S, n^{\prime}} \quad \text { and } \quad \mu_{J}=\left(\frac{\partial A}{\partial n_{J}}\right)_{V, T, n^{\prime}}
\end{gathered}
$$

Gibbs-Duhem equation

$$
d G=\mu_{A} d n_{A}+\mu_{B} d n_{B}+n_{A} d \mu_{A}+n_{B} d \mu_{B}
$$

Also we have seen, $d G=\mu_{A} d n_{A}+\mu_{B} d n_{B} \rightarrow n_{A} d \mu_{A}+n_{B} d \mu_{B}=0$
In general,

$$
\sum_{J} n_{J} d \mu_{J}=0
$$

Significance: Chemical potential of one component of a mixture cannot change independently of the chemical potentials of the other components.

In a binary mixture, $d \mu_{B}=-\frac{n_{A}}{n_{B}} d \mu_{A}$
The same line of reasoning applies to other partial molar quantities. If one increases the other must decrease.

