CML 100: 2015-2016
 Thermodynamics Tutorial 2

(Submit answers to Q. 11, 15, 21, 25, 28, 32 on $19^{\text {th }}$ August 2014 during the lecture: Remember to write your group \# along with the name and entry \#)

1. Deviation coefficients for real gases are defined as $\frac{T}{P}\left(\frac{\partial P}{\partial T}\right)_{V}, \frac{P}{R}\left(\frac{\partial V}{\partial T}\right)_{P}, \frac{P^{2}}{R}\left(\frac{\partial V}{\partial P}\right)_{T}$. Calculate these values for an ideal gas and a van der Waals gas.
2. (a) Express the van der Waals equation of state in virial form $P \bar{V}=R T+B\left(\frac{1}{\bar{V}}\right)+C\left(\frac{1}{\bar{V}}\right)^{2}+\cdots$ and determine B and C in terms of a and b . (b) Use the virial form of the van der Waals equation to determine the Boyle temperature.
3. A quantity of 0.850 mol of an ideal gas initially at a pressure of 15 atm and 300 K is allowed to expand isothermally until its final pressure is 1 atm. Calculate the work done if the expansion is carried out (a) against a vacuum, (b) against a constant external pressure of 1 atm, and (c) reversibly. (d) Calculate also the work done if the same process is carried out adiabatically and reversibly and comment on the difference.
4. Show that for an ideal gas $d q=C_{V} d T+R T d \ln V$ is not an exact differential, but $d z=C_{V} d \ln T+R d \ln V$ is an exact differential.
5. A kettle containing 1 kg of boiling water is heated until evaporation is complete. Calculate $\mathrm{w}, \mathrm{q}, \Delta \mathrm{U}$ for this process. Assume water vapour behaves ideally.
6. (a) Write the expression for $d V$ given that V is a function of p and T. deduce an expression for $d(\ln V)$ in terms of the expansion coefficient α and the isothermal compressibility κ_{T}.
(b) Show that $(\partial p / \partial T)_{V}=\alpha / \kappa_{T}$.
(c) Evaluate the ratio for a perfect gas.
(d) For a van der Waals gas, show that $\kappa_{T} R=\alpha(\bar{V}-b)$.
7. When a fluorocarbon gas was allowed to expand reversibly and adiabatically to twice it volume the temperature fell from 298.15 to 248.44 K and its pressure fell from 1522.2 Torr to 613.85 Torr. Evaluate C_{v} and C_{p}. You may assume that the gas behaves perfectly.
8. Over narrow range of temperature and pressure, the differential expression for the volume of a fluid as a function of temperature and pressure can be integrated to obtain $V=K e^{\alpha T} e^{-\kappa p}$. Show that V is a state function.
9. One mole of chlorine undergoes adiabatic expansion from $1 \mathrm{dm}^{3}$ to a $10 \mathrm{dm}^{3}$ against an external pressure of 0.1013 Mpa. What is the final temperature of gas? $a=665 \mathrm{dm}^{6} \mathrm{Kpa} \mathrm{mol}^{-2}, b=0.055 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{and}_{\mathrm{V}, \mathrm{m}}=33.91 \mathrm{JK}^{-1} \mathrm{~mol}^{-2}$
10. A constant-volume perfect gas thermometer indicates a pressure of 6.69 kPa at the triple point temperature of water (273.16 K). (a) What change of pressure indicates a change of 1.00 K at this temperature? (b) What pressure indicates a temperature of $100.00^{\circ} \mathrm{C}$? (c) What change of pressure indicates a change of 1.00 K at the latter temperature?
11. Derive a general relation between C_{P} and C_{V} to get the general result

$$
C_{p}-C_{V}=\left[P+\left(\frac{\partial U}{\partial V}\right)_{T}\right]\left(\frac{\partial V}{\partial T}\right)_{P}
$$

12. Show for a van der Waals gas $C_{p}-C_{V}=\alpha^{2} T V / \kappa_{T}$. You will need to use an identity $\pi_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P$
13. A mole of ideal gas is compressed adiabatically to one-half of its original volume when the temperature of the gas is increased from 273 K to 433 K . Assuming $\overline{C_{V}}$ is independent of the temperature, calculate the value of $\overline{C_{V}}$ for this gas.
14. Show that the work involved in a reversible, adiabatic pressure change of one mole of an ideal gas is given by

$$
w=c_{V} T_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{R / C_{P}}-1\right]
$$

where T_{1} is the initial temperature and P_{1} and P_{2} are the initial and final pressures, respectively.
15. A sample of 1.00 mol perfect gas molecules with $C_{p, m}=7 / 2 R$ is put through the following cycle: (a) Constant volume heating to twice its initial temperature, (b) Reversible, adiabatic expansion back to its initial temperature, (c) reversible isothermal compression back to 1.00 atm. Calculate $q, w, \Delta U$, and ΔH for each step and overall.
16. Take nitrogen to be a van der Waals gas with $a=1.390 \mathrm{dm}^{6}$ atm mol^{-2} and $b=0.03913 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$, and calculate ΔH_{m} when the pressure on the gas is decreased from 500 atm to 1.00 atm at 300 K . For a van der Waals gas, $\mu_{J T}=\{(2 a / R T)$ $-b\} / C_{p, \mathrm{~m}}$. Assume $C_{p, \mathrm{~m}}=7 /{ }_{2} R$.
17. (a) What is the total differential of $z=x^{2}+2 y^{2}-2 x y+2 x-4 y-8$? (b) Show that $\partial^{2} z / \partial y \partial x=\partial^{2} z / \partial x \partial y$ for this function. (c) Let $z=x y-y+\ln x+2$. Find $d z$ and show that it is exact.
18. Calculate the work done during the isothermal reversible expansion of a gas that satisfies the virial equation of state, $\mathrm{P} \overline{\mathrm{V}}=\mathrm{RT}+\mathrm{B}\left(\frac{1}{\overline{\mathrm{~V}}}\right)+\mathrm{C}\left(\frac{1}{\overline{\mathrm{~V}}}\right)^{2}+\cdots$. Evaluate (a) the work for 1.0 mol Ar at $273 \mathrm{~K}\left(\mathrm{~B}=-21.7 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$ and (b) the same amount of a perfect gas. Let the expansion be from $500 \mathrm{~cm}^{3}$ to $1000 \mathrm{~cm}^{3}$ in each case.
19. A gas obeys the equation of state $V_{\mathrm{m}}=R T / p+a T^{2}$ and its constant-pressure heat capacity is given by $C_{p, \mathrm{~m}}=A+B T+$ $C p$, where a, A, B, and C are constants independent of T and p. Obtain expressions for (a) the Joule-Thomson coefficient and its constant-volume heat capacity.
20. Calculate the heat needed to raise the temperature of air in a house from 20 to $25^{\circ} \mathrm{C}$. Assume that the house contains $600 \mathrm{~m}^{3}$ of air, which should be taken to be a perfect diatomic gas. The density of air is $1.21 \mathrm{~kg} \mathrm{~m}^{-3}$ at $20^{\circ} \mathrm{C}$ Calculate $\Delta \mathrm{U}$ and $\Delta \mathrm{H}$ for the heating of the air.
21. Find the maximum inversion temperature of the gas whose equation of state is $\left(P+\frac{x}{T V^{2}}\right)(V-y)=R T$ where x and y are constants.
22. When a fluorocarbon gas was allowed to expand reversibly and adiabatically to twice it volume the temperature fell from 298.15 to 248.44 K and its pressure fell from 1522.2 Torr to 613.85 Torr. Evaluate C_{v} and C_{p}. You may assume that the gas behaves perfectly.
23. Verify that the enthalpy of a perfect gas is independent of its pressure while it is dependent upon pressure for a van der Waals gas. [Use the approximate form of van der Waals equation PV $=n R T+n P(b-a / R T)]$.
24. An important application of adiabatic cooling/heating is in atmospheric physics. Pressure varies with altitude as $d P / d h=-g \rho$, where ρ is the density. Calculate the change in temperature at the top of a mountain 2 km above the valley floor assuming the process is adiabatic and air behaves ideally.
25. Which of these cyclic integrals must vanish for a closed system with $\mathrm{P}-\mathrm{V}$ work only? (a) $\oint P d V$, (b) $\oint(P d V+V d P)$, (c) (c) $\oint d q_{r e v} / T$.
26. One mol of hydrogen occupies a volume of $0.1 \mathrm{~m}^{3}$ at 300 K and one mol of argon also occupies the same volume but at 400 K . While isolated from their surroundings, each undergoes a free expansion, the hydrogen to 5 times and argon 8 times its initial volume. The two masses are then placed in contact with each other and reach thermal equilibrium. What is the total change in entropy? $\left(C_{v}^{H_{2}}=10 \mathrm{~kJ} / \mathrm{K} / \mathrm{kg}, C_{v}^{A r}=10 \mathrm{~kJ} / \mathrm{K} / \mathrm{kg}\right)$.
27. One mole of an ideal monatomic gas undergoes an irreversible adiabatic process in which the gas ends up at STP and for which ΔS is $21 \mathrm{JK}^{-1}$ and w is 1.26 kJ . The entropy of the gas at STP is $270 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Calculate ΔU and ΔG for the process and also the initial state of the gas.
28. It is possible to cool liquid water below its freezing point of 273.15 K without the formation of ice if proper care is taken to prevent nucleation. A kilogram of sub-cooled liquid water at 263.15 K is contained in a well-insulated vessel. Nucleation is induced by the introduction of a speck of dust, and a spontaneous crystallization process ensues. Find the _nal state of the water and calculate the total entropy change for the process. (Heat of fusion is $334 \mathrm{Jg}^{-1}, \mathrm{C}_{\mathrm{p}}(\mathrm{l})=$ $\left.4.185 \mathrm{Jg}^{-1} \mathrm{~K}^{-1} ; \mathrm{C}_{\mathrm{p}}(\mathrm{s})=2.092 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}\right)$
29. 100 g of ice at $0^{\circ} \mathrm{C}$ is dropped into an insulated beaker containing 150 g of water at $100{ }^{\circ} \mathrm{C}$. Calculate ΔS for this process.
30. Calculate the maximum work and the maximum non-expansion work that can be obtained from the freezing of supercooled water at $-5^{\circ} \mathrm{C}$ and 1.0 atm . The densities of water and ice are 0.999 and $0.917 \mathrm{~g} \mathrm{~cm}^{-3}$, respectively at $-5^{\circ} \mathrm{C}$.
31. One mole of He is heated from $200^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$ at a constant pressure of 1 atm . Given that the absolute entropy of He at $200^{\circ} \mathrm{C}$ is $810 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, and assuming He is a perfect gas, comment on the spontaneity of the process.
32. Derive the relations: (i) $C_{p}-C_{v}=T\left(\frac{\partial p}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial T}\right)_{p} ;(i i) C_{p}-C_{V}=\frac{\alpha^{2} T V}{\beta} ;(i i i) \mu_{J T}=$ $-\left(\frac{V}{C_{p}}\right)\left(\beta C_{V} \mu_{J}-\beta p+1\right) ;(i v)\left(\frac{\partial H}{\partial V}\right)_{S}=\frac{\gamma}{\beta} ;(v)\left(\frac{\partial V}{\partial T}\right)_{p}=\frac{C_{V} \beta}{T \alpha}$
33. Calculate the temperature change when the pressure on 1 kg of water is increased from 0 to $10^{8} \mathrm{~Pa}$ reversibly and adiabatically. The initial temperature of water is 273.15 K , the specific volume is $10^{-3} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$, the coefficient of thermal expansion, $\alpha=10^{-6} / \mathrm{K}$ and Cp is $4184 \mathrm{~J} /(\mathrm{kg} \mathrm{K})$.

